Smart Grid Telecommunications. Ramon Ferrús
Чтение книги онлайн.

Читать онлайн книгу Smart Grid Telecommunications - Ramon Ferrús страница 20

Название: Smart Grid Telecommunications

Автор: Ramon Ferrús

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119755395

isbn:

СКАЧАТЬ to a centralized control performed from UCCs. Central and/or remote intelligence has progressively taken control of most elements of the grid in its different parts. Automatic collection of distributed information allows performing grid simulation, and operation and maintenance activities effectively, as it would not be possible without ICTs to analyze thousands of complex parameters without manual intervention. Automated systems have an instrumental role in utility operations, take complex decisions, and execute actions over remote grid assets based on data coming from many distributed grid components. Both the infrastructure (grid) and algorithms (intelligence) are fundamental for the Smart Grid, and the “glue” that integrates them is ICT [34].

      All Smart Grid strategies and visions are founded upon the availability of telecommunications connectivity. Most Smart Grid applications, in the different segments of the electric power system, rely upon the availability of a telecommunications network for interconnection of their components [35]. Some of these segments bring less difficulties, e.g., when investment allowance is granted, or the distributed nature and number of the assets involved are low, or the telecommunication connectivity is already available and does not involve any special requirements. However, when any of those circumstances, or several of them, do not happen, the difficulties may cripple Smart Grid adoption despite all efforts in areas that are not related to telecommunications. Remarkably, Distribution and Transmission segments are (in this order) the most challenging fields. With no doubt, we cannot consider any of those two segments in a monolithic way, as they consist of many different components. Their various parts are intrinsically disparate and present distinctive challenges. Thus, in each case, we will need to see which connectivity is needed depending on the part of the grid needing “smartness,” and for which Smart Grid application or service.

      Thus, telecommunication connectivity is more important than ever for utilities. Although utilities have historically used telecommunications to protect and control their grids, the challenge of extending telecommunication access to potentially millions of geographically dispersed end‐points over large service areas, is inherent to the Smart Grid and remains unsolved even considering the sole telecommunications market. On one hand, telecommunication markets (TSPs, equipment vendors, etc.) tend to favor profitable population segments and concentrate their network efforts where return on investment can be maximized (thus leading to terms such as “telecommunications gap” – term coined in “Maitland Report” [36] to describe the different telephone access density in the different parts of the world, or the more recent “digital divide,” that copes both with access to information in terms of information technology, and in terms or communications connectivity after this foundational document of modern telecommunications development). On the other hand, standard residential, commercial, or industrial telecommunication services supported by existing networks and equipment do not by default comply with the type of need and service‐level guarantees the utilities have in their operational environments and complex processes [37], tailored to maximize the safety and resiliency of the electric power system as a whole.

      The history of utilities cannot be understood without the telecommunication networks and services supporting their operations. The future of utilities with Smart Grid will reinforce this reality.

      There are some Smart Grid challenges tightly connected to the use of telecommunications technologies and services. They can be grouped in two broad categories Customer Engagement and Grid Control.

      1.5.1 Customer Engagement Challenges

      The Consumption Point is now transformed into a customer, with changing needs and capabilities, in contrast to its view as a plain electricity service subscriber. It is important not only that, as a customer, it demands a quality service but also that the customer has a potential to contribute to the electric power system in various forms.

      1.5.1.1 Customers as Smart Electricity Consumers

      The major concern of electric power system operators, apart from the hourly consumption prediction to manage generation sources in real time, is the general reduction of the curve peaks, and the possibility to control the load (consumption) at the moments where the system may not be prepared to cope with it.

      If the consumption pattern can be influenced, the total electricity demand can be flattened, while keeping total energy consumed the same. This effect implies that the system does not need to be dimensioned to cope with the worst‐case condition of electricity demand. On the other hand, the system operator needs to have tools available to control the loads present in the network (i.e., to be capable of reducing the number of them connected or, to curtail their consumption) in a near‐real‐time manner.

Schematic illustration of sample weekly aggregated electricity demand curve. Consumption in the Spanish peninsula.

      Source: Real‐time Spanish Electricity Demand [38].

      DSM is the key concept to get the customer to participate in the electric power system. DSM includes all the activities performed by the utilities to “influence” the customer demand to balance instantaneous grid electricity supply with the demand. DSM groups together a set of activities including pure energy efficiency initiatives, where Demand Response (DR) is the most important one (see Chapter 5).

      1.5.1.2 Customers as Energy Generators

      Customers have now a set of technologies (DER [39]) that allow them to participate as an agent that has the possibility of producing part of the energy they need, and even help the grid, making any excess of generation СКАЧАТЬ