Название: Graph Spectral Image Processing
Автор: Gene Cheung
Издательство: John Wiley & Sons Limited
Жанр: Программы
isbn: 9781119850816
isbn:
Onuki, M., Ono, S., Yamagishi, M., Tanaka, Y. (2016). Graph signal denoising via trilateral filter on graph spectral domain. IEEE Trans. Signal Inf. Process. Netw., 2(2), 137–148.
Phillips, G.M. (2003). Interpolation and Approximation by Polynomials. Springer, New York.
Pomalaza-Raez, C. and McGillem, C. (1984). An adaptative, nonlinear edge-preserving filter. IEEE Trans. Acoust., Speech, Signal Process, 32(3), 571–576.
Sakiyama, A. and Tanaka, Y. (2014). Oversampled graph Laplacian matrix for graph filter banks. IEEE Trans. Signal Process, 62(24), 6425–6437.
Sakiyama, A., Watanabe, K., Tanaka, Y. (2016). Spectral graph wavelets and filter banks with low approximation error. IEEE Trans. Signal Inf. Process. Netw., 2(3), 230–245.
Sakiyama, A., Tanaka, Y., Tanaka, T., Ortega, A. (2019a). Eigendecomposition-free sampling set selection for graph signals. IEEE Trans. Signal Process, 67(10), 2679–2692.
Sakiyama, A., Watanabe, K., Tanaka, Y. (2019b). m-channel critically sampled spectral graph filter banks with symmetric structure. IEEE Signal Processing Letters, 26(5), 665–669.
Sakiyama, A., Watanabe, K., Tanaka, Y., Ortega, A. (2019c). Two-channel critically-sampled graph filter banks with spectral domain sampling. IEEE Trans. Signal Process, 67(6), 1447–1460.
Shuman, D.I., Vandergheynst, P., Frossard, P. (2011). Chebyshev polynomial approximation for distributed signal processing. Proc. DCOSS’11, 1–8.
Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83–98.
Shuman, D.I., Wiesmeyr, C., Holighaus, N., Vandergheynst, P. (2015). Spectrum-adapted tight graph wavelet and vertex-frequency frames. IEEE Trans. Signal Process, 63(16), 4223–4235.
Shuman, D.I., Faraji, M.J., Vandergheynst, P. (2016a). A multiscale pyramid transform for graph signals. IEEE Trans. Signal Process, 64(8), 2119–2134.
Shuman, D.I., Ricaud, B., Vandergheynst, P. (2016b). Vertex-frequency analysis on graphs. Applied and Computational Harmonic Analysis, 40(2), 260–291.
Strang, G. (1999). The discrete cosine transform. SIAM Rev., 41(1), 135–147.
Strang, G. and Nguyen, T.Q. (1996). Wavelets and Filter Banks. Wellesley-Cambridge, Massachusetts.
Tanaka, Y. (2018). Spectral domain sampling of graph signals. IEEE Trans. Signal Process, 66(14), 3752–3767.
Tanaka, Y. and Eldar, Y.C. (2020). Generalized sampling on graphs with subspace and smoothness priors. IEEE Transactions on Signal Processing, 68, 2272–2286.
Tanaka, Y. and Sakiyama, A. (2014). M-channel oversampled graph filter banks. IEEE Trans. Image Process, 62(14), 3578–3590.
Tanaka, Y., Hasegawa, M., Kato, S., Ikehara, M., Nguyen, T.Q. (2010). Adaptive directional wavelet transform based on directional prefiltering. IEEE Trans. Image Process., 19(4), 934–945.
Tanaka, Y., Eldar, Y.C., Ortega, A., Cheung, G. (2020). Sampling signals on graphs: From theory to applications. IEEE Signal Processing Magazine, 37(6), 14–30.
Taubin, G. (1995). A signal processing approach to fair surface design. Proc. SIGGRAPH’95, 351–358.
Taubin, G., Zhang, T., Golub, G.H. (1996). Optimal surface smoothing as filter design. Proc. ECCV’96, 283–292.
Teke, O. and Vaidyanathan, P.P. (2016). Extending classical multirate signal processing theory to graphs – Part II: M-channel filter banks. IEEE Trans. Image Process, 65(2), 423–437.
Tomasi, C. and Manduchi, R. (1998), Bilateral filtering for gray and color images. IEEE International Conference on Computer Vision, 839–846.
Vaidyanathan, P.P. (1993). Multirate Systems and Filter Banks. Prentice Hall, New Jersey.
Vallet, B. and Lévy, B. (2008). Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 27, 251–260.
Vetterli, M. and Kovacevic, J. (1995). Wavelets and Subband Coding. Prentice Hall, New Jersey.
Vetterli, M., Kovacevi, J., Goyal, V.K. (2014). Foundations of Signal Processing. Cambridge University Press, Cambridge.
Weickert, J. (1998). Anisotropic Diffusion in Image Processing 1, Teubner, Stuttgart.
Xu, L., Lu, C., Xu, Y., Jia, J. (2011). Image smoothing via l0 gradient minimization. ACM Transactions on Graphics (TOG), 30, 174.
Zhang, F. and Hancock, E.R. (2008). Graph spectral image smoothing using the heat kernel. Pattern Recognition, 41(11), 3328–3342.
Zhang, D. and Liang, J. (2017). Graph-based transform for 2D piecewise smooth signals with random discontinuity locations. IEEE Transactions on Image Processing, 26(4), 1679–1693.
Zhang, H., Van Kaick, O., Dyer, R. (2010). Spectral mesh processing. Computer Graphics Forum, 29, 1865–1894.
1 Here, we assume both x and y are finite length signals and their boundaries are extended or filtered by a boundary filter to ensure that the equation is valid.
2 While the computation cost for eigendecomposition of a sparse matrix is generally lower than , it still requires a high computational complexity, especially for large graphs.
3 The term “graph signal” was first introduced in Taubin et al. (1996), to the best of our knowledge.
4 In fact, this R can also be used for the reconstruction of the undersampled systems.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или СКАЧАТЬ