Computational Analysis and Deep Learning for Medical Care. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Computational Analysis and Deep Learning for Medical Care - Группа авторов страница 22

СКАЧАТЬ Zeiler, M.D. and Fergus, R., Visualizing and understanding convolutional networks. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics, 8689 LNCS, PART 1, 818–833, 2014.

      4. Simonyan, K. and Zisserman, A., Very deep convolutional networks for large-scale image recognition, 3rd Int. Conf. Learn. Represent. ICLR 2015 -Conf. Track Proc., 1–14, 2015.

      5. Szegedy, C. et al., Going deeper with convolutions. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07-12-June, 1–9, 2015.

      6. He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016-Decem, 770–778, 2016.

      7. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., Aggregated residual transformations for deep neural networks. Proc. -30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017. 2017-Janua, 5987–5995, 2017.

      8. Hu, J., Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf, CVPR. 7132–7141, 2018.

      9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., Densely connected convolutional networks. Proc. -30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017-Janua, 2261–2269, 2017.

      10. Howard, A.G. et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017.

      11. Mader, A.O., Lorenz, C., Meyer, C., Segmenting Labeled Intervertebral Discs in Multi Modality MR Images. Springer Computational Methods and Clinical Applications for Spine Imaging: 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, 3, 11397, 178–180, 2019.

      12. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I., Constrained Domain Adaptation for Segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 11765 LNCS, 326–334, 2019.

      13. Zeng, G., Belavy, D., Li, S., Zheng, G., Evaluation and comparison of automatic intervertebral disc localization and segmentation methods with 3D multi-modality MR images: A grand challenge. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 11397 LNCS, 163–171, 2019.

      14. Liu, C. and Zhao, L., Intervertebral disc segmentation and localization from multi-modality MR images with 2.5D multi-scale fully convolutional network and geometric constraint post-processing. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 11397 LNCS, 144–153, 2019.

      15. Gao, Y., Deep learning framework for fully automated intervertebral disc localization and segmentation from multi-modality MR images. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 11397 LNCS, 119–129, 2019.

      16. Iriondo, C. and Girard, M., Vesalius: VNet-Based Fully Automatic Segmentation of Intervertebral Discs in Multimodality MR Images. Springer Computational Methods and Clinical Applications for Spine Imaging: 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 11397, 175–177, 2019.

      17. Dolz, J., Desrosiers, C. and Ayed, I.B., IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal Unet, Springer International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging, 11397, 130–143, 2018.

      1 *Corresponding author: [email protected]

      2

      Location-Aware Keyword Query Suggestion Techniques With Artificial Intelligence Perspective

       R. Ravinder Reddy1*, C. Vaishnavi1, Ch. Mamatha2 and S. Ananthakumaran3

       1 Chaitanya Bharathi Institute of Technology, Hyderabad, India

       2 Software Engineer, Hyderabad, India

       3 Koneru Lakshmaiah Education Foundation, Vijayawada, India

       Abstract

      Keywords: Artificial intelligence, query suggestion, location-aware keyword, search engine

      The enormous growth of ICT in the past two decades has changed the human lifestyle a lot. With the advent of fast-changing technologies that makes us more comfortable and to take fast decisions, the time constraint is becoming more critical [9]. The increased availability of the internet and pervasive computing has changed the computing paradigm. Most of the queries can be solved in minutes based on user preferences. These days, everyone is using the internet from any corner of the world without having any particular domain knowledge. It becomes a challenge for the researchers to provide appropriate and more useful query results to the users. Most of the search engines are working to offer useful information to their clients. The retrieved information is very crucial and the precision of the results is more important. In the early age of search engines, they retrieved the СКАЧАТЬ