Название: Global Drought and Flood
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: География
isbn: 9781119427216
isbn:
ACKNOWLEDGMENTS
This study has been supported by NOAA and NASA programs including NOAA GOES‐R Risk Reduction program, NOAA NESDIS PSDI program, NOAA JPSS Proving Ground and Risk Reduction Program, and NASA Applied Science Program. Contents of this chapter are solely the opinions of the author(s) and do not constitute a statement of policy, decision, or position on behalf of NOAA or the US Government.
Figure 2.7 Monthly BDI_b for the southern United States (from 25°N, −115°W to 40°N, −90°W) domain in 2011.
(Source: From Yin, J., Zhan, X., Hain, C. R., Liu, J., & Anderson, M. C. (2018). A Method for Objectively Integrating Soil Moisture Satellite Observations and Model Simulations Toward a Blended Drought Index. Water Resources Research, 54(9), 6772–6791. © 2018, John Wiley & Sons.)
REFERENCES
1 Allen, R., Irmak, A., Trezza, R., Hendrickx, J.M.H., Bastiaanssen, W., & Kjaersgaard, J. (2011). Satellite‐based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011–4027. doi:10.1002/hyp.8408
2 Allen, R.G., Tasumi, M., Morse, A., & Trezza, R. (2005). A Landsat‐based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drainage Systems, 19, 251–268.
3 Allen, R.G., Tasumi, M., & Trezza, R. (2007). Satellite‐based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering—ASCE, 133(4), 380–394. doi:10.1061/(asce)0733‐9437(2007)133:4(380)
4 Anderson, M.C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., Wardlow, B., & Pimstein, A. (2013). An intercomparison of drought indicators based on thermal remote sensing and NLDAS‐2 simulations with U.S. Drought Monitor classifications. Journal of Hydrometeorology, 14, 1035–1056.
5 Anderson, M.C., Hain, C.R., Wardlow, B., Pimstein, A., Mecikalski, J.R., & Kustas, W.P. (2011). Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental U.S. Journal of Climate, 24, 2025–2044.
6 Anderson, M.C., Norman, J.M., Diak, G.R., Kustas, W.P., & Mecikalski, J.R. (1997). A two‐source time‐integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of the Environment, 60, 195–216.
7 Anderson, M.C., Norman, J.M., Kustas, W.P., Li, F., Prueger, J.H., & Mecikalski, J.R. (2005). Effects of vegetation clumping on two‐source model estimates of surface energy fluxes from an agricultural landscape during SMACEX. Journal of Hydrometeorology, 6, 892–909.
8 Anderson, M.C., Normal, J.M., Kustas, W.P., Li, F., Prueger, J.H., & Mecikalski, J.R. (2007). A climatological study of evapotranspiration and moisture stress across the continental United States: 1. Model formulation. Journal of Geophysical Research, 112(D10). https://doi.org/10.1029/2006JD007506
9 Barriopedro, D., Fischer, E.M., Luterbacher, J., Trigo, R.M., & García‐Herrera, R. (2011). The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220–224.
10 Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., & Holtslag, A.A.M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. Journal of Hydrology, 212(1–4), 198–212. doi:10.1016/s0022‐1694(98)00253‐4
11 Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J.F., Roerink, G.J., & van der Wal, T. (1998). A remote sensing surface energy balance algorithm for land (SEBAL) —2. Validation, Journal of Hydrology, 212(1–4), 213–229. doi:10.1016/s0022‐1694(98)00254‐6
12 Brutsaert, W. (1982). Evaporation into the atmosphere: Theory, history and applications (1st edn.). Springer.
13 Brutsaert, W. & Sugita, M. (1992). Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. Journal of Geophysical Research, 97, 18377–18382.
14 Carlson, T.N., & Ripley, D.A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252.
15 Courault, D., Clastre, P., Guinot, J.P., & Seguin, B. (1994). Analyse des s´echeresses de 1988 `a 1990 en France `a partir de l’analyse combin´ee de donn´ees satellitaires NOAA‐AVHRR et d’un mod`ele agrom´et´eorologique. Agronomie, 14, 41–56.
16 Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrigation and Drainage Systems, 19, 223–249.
17 Crago, R.D. (1996). Comparison of the evaporative fraction and the Priestley–Taylor α for parameterizing daytime evaporation. Water Resources Research, 32, 1403–1409.
18 Culf, A.D. (1993). The potential for estimating regional sensible heat flux from convective boundary layer growth. Journal of Hydrology, 146, 235–244.
19 Diak, G.R. (1990). Evaluation of heat flux, moisture flux and aerodynamic roughness at the land surface from knowledge of the PBL height and satellite‐derived skin temperatures. Agriculture and Forest Meteorology, 52, 181–198.
20 Diak, G.R. & Whipple, M.S. (1995) A note on estimating surface sensible heat fluxes using surface temperatures measured from a geostationary satellite during FIFE 1989. Journal of Geophysical Research, 100, 25453–25461.
21 Engman, E.T. (1991). Applications of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sensing of Environment, 35, 213–226.
22 Entekhabi, D., Njoku, E.G. Houser, P., Spencer, M., Doiron, T., Yunjin, K., et al. (2004). The hydrosphere state (hydros) satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Transactions on Geoscience and Remote Sensing, 42, 2184–2195.
23 Fang, L., Hain, C.R., Zhan, X., & Anderson, M.C. (2016). An inter‐comparison of soil moisture data products from satellite remote sensing and a land surface model. International Journal of Applied Earth Observation and Geoinformation, 48, 37–50.
24 Fisher, J.B., Tu, K.P., & Baldocchi, D.D. (2008). Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP‐II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112, 901–919.
25 Gash, J.H.C. (1987). An analytical framework for extrapolating evaporation measurements by remote sensing surface temperatures. International Journal of Remote Sensing, 8, 1245–1249.
26 Grigg, N.S. (2014). The 2011–2012 drought in the СКАЧАТЬ