Biofuel Cells. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biofuel Cells - Группа авторов страница 32

Название: Biofuel Cells

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119725053

isbn:

СКАЧАТЬ as a power source for wearable microelectronic devices by modifying anode with Osmium polymer and lactate oxidase, and cathode with bilirubin oxidase. The electrodes were placed between two commercial contact lenses to avoid direct contact with the eye. The designed EFC was shown in Figure 2.5. The system was operated in artificial tear solutions containing lactate, and it generated a power density of 1.7 ± 0.1 μW cm−2 and an open-circuit voltage of 380 ± 28 mV [49].

      BFCs which consist of two sub-categories (EFCs and MFCs), are one of the important alternative energy generation technologies of the last fifty years. However, EFCs have attracted more attention due to their miniaturization especially in recent years. This chapter focuses on implantable EFCs, wearable EFCs and their breakthrough applications.

      The promising implantable and wearable EFC techology requires interdisciplinary research efforts to overcome the challenges. It is expected that wearable and implantable devices powered by biofuel cells would be widely used to benefit people in the near future.

      This work was financially supported by the Zonguldak Bülent Ecevit University Research Fund under Grant [number: ZBEU-2019-39971044-02]. Special thanks to Mustafa Koray Uru for figure edits throughout this study.

      1. Cosnier, S., Gross, A.J., Giroud, F., Holzinger, M., Beyond the hype surrounding biofuel cells: What’s the future of enzymatic fuel cells? Curr. Opin. Electrochem., 12, 148, 2018.

      2. Meredith, M.T., Minteer, S.D., Biofuel cells: Enhanced enzymatic bioelectrocatalysis. Annu. Rev. Anal. Chem., 5, 157, 2012.

      3. Kiran, V., Gaur, B., Microbial fuel cell: Technology for harvesting energy from biomass. Rev. Chem. Eng., 29, 189, 2013.

      4. Chaturvedi, V., Verma, P., Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3:38, 2016.

      5. Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I., Microbial fuel cells: From fundamentals to applications, A review. J. Power Sources, 356, 225, 2017.

      6. Chaudhuri, S.K., Lovley, D.R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21, 1229, 2003.

      7. Kim, N., Choi, Y., Jung, S., Kim, S., Development of Microbial Fuel Cells Using Proteus vulgaris. Bull. Korean Chem. Soc., 21, 44, 2000.

      8. Kim, N., Choi, Y., Jung, S., Kim, S., Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng., 70, 109, 2000.

      9. Bond, D.R., Lovley, D.R., Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol., 71, 2186, 2005.

      10. Holmes, D.E., Bond, D.R., Lovley, D.R., Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol., 70, 1234, 2004.

      12. Min, B., Logan, B.E., Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38, 5809, 2004.

      13. Kim, J.R., Jung, S.H., Regan, J.M., Logan, B.E., Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technol., 98, 2568, 2007.

      14. Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Pham, H.T., Vermeulen, J., Verhaege, M., Lens, P., Verstraete, W., Microbial fuel cells for sulfide removal. Environ. Sci. Technol., 40, 5218, 2006.

      15. Niessen, J., Schröder, U., Harnisch, F., Scholz, F., Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett. Appl. Microbiol, 41, 286, 2005.

      16. Niessen, J., Harnisch, F., Rosenbaum, M., Schröder, U., Scholz, F., Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem. Commun., 8, 869, 2006.

      17. Rezaei, F., Richard, T.L., Brennan, R.A., Logan, B.E., Substrate-enhanced microbial fuel cells for improved remote power generation from sedimentbased systems. Environ. Sci. Technol., 41, 4053, 2007.

      18. Zebda, A., Alcaraz, J.-P., Vadgama, P., Shleev, S., Minteer, S.D., Boucher, F., Cinquin, P., Martin, D.K., Challenges for successful implantation of biofuel cells. Bioelectrochemistry, 124, 57, 2018.

      19. Chen, T., Barton, S.C., Binyamin, G., Gao, Z., Zhang, Y., Kim, H.-H., Heller, A., A miniature biofuel cell. J. Am. Chem. Soc., 123, 8630, 2001.

      20. Palmore, G.T.R., Bertschy, H., Bergens, S.H., Whitesides, G.M., A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem., 443, 155, 1998.

      21. Katz, E., MacVittie, K., Implanted biofuel cells operating СКАЧАТЬ