Biofuel Cells. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biofuel Cells - Группа авторов страница 11

Название: Biofuel Cells

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119725053

isbn:

СКАЧАТЬ mechanisms, properties, optimizing parameters, analytical characterization tools, various types of biofuel cells, all-category of materials, catalysts, engineering architectures, implantable biofuel cells, applications and novel innovations and challenges in this sector. This book is a reference guide for the peoples working in the areas of energy and environment. This book is an essential reference guide for readers, students, faculty, engineers, industrialists, energy chemists, material scientists, electrochemists biotechnologists, microbiologists, and environmentalists who would like to understand the science behind the advanced renewable energy, advanced materials and flexible implantable devices, etc. This book includes the seventeen chapters and the summaries are given below.

      Chapter 2 highlights recent progress in implantable and wearable biofuel cell technologies and their breakthrough applications particularly in living bodies. Important parameters such as sufficient and stable power output, long duration, biocompatibility, biofouling, inflammation that need to be resolved before being converted into a commercial product are discussed.

      Chapter 3 discusses some of the challenges and factors that affect the overall performance and efficiency of biofuel cells. Biofuel cell development is an emerging versatile technological platform for harvesting the desired energy requirements of miniature implantable medical devices to meet the challenges of various biomedical applications under physiological conditions.

      Chapter 4 discusses the basic structure of an enzymatic fuel cell. Various enzymes used in enzymatic biofuel cells and their modes of electron transport are mentioned. Enzyme immobilization strategies and different materials for enzyme immobilization are also detailed. Finally, the advantages and prospects with pertaining challenges are discussed.

      Chapter 5 provides general knowledge about microbial fuel cell technology. The basic working principle of the microbial fuel cell is discussed. Furthermore, the components of microbial fuel cell technology, i.e. reactor configurations, anode and cathode materials and type of substrates are elaborated. The application, challenges, and prospects of microbial fuel cell technology are also presented.

      Chapter 6 summarizes the basic principles of the biofuel cells and their uses in various fields. The discussion is mainly focused on the flexibility to the biofuel cells, recent advances and the challenges that are faced by flexible biofuel cells.

      Chapter 7 discusses various types of carbon-based nanomaterials in the biofuel domain. Detailed discussion on carbon-based nanomaterials like cellulose starch, glucose, carbon nanoparticles, nanographene, carbon nanotubes and carbon nanofibers are presented. Finally, a separate section on carbon-based nanomaterials is presented.

      Chapter 8 discusses different types of biofuel cells with special emphasis on glucose-based biofuel cell. Advantages of using glucose oxidase as a natural enzyme-catalyst in these cells are described. Prevention of loss of efficiency at high temperatures due to denaturation of enzymes using polyols is discussed.

      Chapter 10 focuses on various engineering architectures for biofuel cells. It explores the attractiveness of biofuel cells as energy sources. Various routes for design and fabrication of these cells, material options available, relevant characterization techniques, perspectives and future challenges are discussed.

      Chapter 11 discusses the history and classification of biofuel cells and biochemical reactions. The classification of biofuel cells comprises bio-electro chemicals producing whole organisms, producing hydrogen gas, etc. Additionally, various commercial applications of biofuel cells are discussed in detail.

      Chapter 12 addresses the development and experimental progress of oxygen reduction reactions cathode catalyst for biofuel cells applications. Classification, mechanism, activity and performance of oxygen reduction reaction cathode catalyst are discussed in details. Additionally, various aspects concerning their electrochemical activity and their limitations in terms of technological applications are highlighted in this chapter.

      Chapter 13 starts with an introduction for working mechanisms of fuel cells, biofuel cells, and the microbial desalination cell. A major focus is given to explore various configurations of desalination cells designed so far. The chapter concludes with a discussion on the factors affecting the performance and efficiency of desalination cells.

      Chapter 14 discusses the types, designs, working principles, applications of biofuel cells and conventional fuel cells. It explains in detail about the types of various fuel cell and biofuel cells such as molten carbonate, proton exchange membrane, direct methanol, solid oxide, alkaline, phosphoric acid fuel cells, microbial, enzymatic, glucose, photochemical and flexible biofuel cells as well as their advantages, limitations, and applications.

      Chapter 15 deliberates on different classes of biofuel cells with a focus on wearable biofuel cells, fuel used and bioelectricity generation outlining possible bioelectronic applications. The issues, challenges and scalability of biofuel cells are discussed and addressed through a proposed sustainable solution roadmap.

      Chapter 17 discusses the emerging alternative sources of renewable energy in the form of biofuel cells. The fundamental concepts, and types of biofuel cells and their applications are explained. The prospects of biofuel cells as substitutes of conventional technologies and their potentialities in novel applications are presented.

      Bioelectrocatalysis for Biofuel Cells

       Casanova-Moreno Jannu1, Arjona Noé2 and Cercado Bibiana2*

       1CONACYT-Centro СКАЧАТЬ