Autonomous Airborne Wireless Networks. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Autonomous Airborne Wireless Networks - Группа авторов страница 12

Название: Autonomous Airborne Wireless Networks

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119751700

isbn:

СКАЧАТЬ Channel Model for Airborne Networks

       Aziz A. Khuwaja1,2 and Yunfei Chen1

       1School of Engineering, Electrical and Electronic Engineering Stream, University of Warwick, Coventry, UK

       2Department of Electrical Engineering, Sukkur IBA University, Sukkur, Pakistan

      

      The use of unmanned aerial vehicles (UAVs) is desirable due to their high maneuverability, ease of operability, and affordable prices in various civilian applications, such as disaster relief, aerial photography, remote surveillance, and continuous telemetry. One of the promising application of UAVs is enabling the wireless communication network in cases of natural calamity and in hot spot areas during peak demand where the resources of the existing communication network have been depleted [1]. Qualcomm has already initiated field trials for the execution of fifth generation (5G) cellular applications [2]. Google and Facebook are also exploiting the use of UAVs to provide Internet access to far‐flung destinations [3].

      The selection of an appropriate type of UAV is essential to meet the desired quality of service (QoS) depending on applications and goals in different environments. In fact, for any specific wireless networking application, the UAV altitude and its capabilities must be taken into account. UAVs can be categorized, based on their altitude, into low‐altitude platforms (LAPs) and high‐altitude platforms (HAPs). Furthermore, based on their structure, UAVs can be categorized as fixed‐wing and rotary‐wing UAVs. In comparison with rotary wings, fixed‐wing UAVs move in the forward direction to remain aloft, whereas rotary‐wing UAVs are desired for applications that require UAVs to be quasi‐stationary over a given area. However, in both types, flight duration depends on their energy sources, weight, speed, and trajectory.

      Small UAVs may experience airframe shadowing due to their flight path with sharper changes in pitch, yaw, and roll angle. In addition, distinct structural design and material of UAV body may contribute additional shadowing attenuation. This phenomenon has not yet been extensively studied in the literature.

      Despite the number of promising UAV applications, one must address several technical challenges before the widespread applicability of UAVs. For example, while using UAV in aerial base station (BS) scenario, the important design considerations include radio resource management, flight time, optimal three‐dimensional deployment of UAV, trajectory optimization, and performance analysis. Meanwhile, considering UAV in the aerial user equipment (UE) scenario, the main challenges include interference management, handover management, latency control, and three‐dimensional localization. However, in both scenarios, channel modeling is an important design step in the implementation of UAV‐based communication network. This chapter provides an overview of the use of UAV as aerial UEs and aerial BSs and discusses the technical challenges related to AG channel modeling, airframe shadowing, optimal deployment of UAVs, trajectory optimization, resource management, and energy efficiency.

      

Country Maximum altitude (m) Minimum distance to humans (m) Minimum distance to airport (km)
US 122 8
UK 122 50
Chile 130 36
Australia 120 30 5.5
South Africa 46 50 10

      For time‐sensitive applications such as emergency services, LAPs are more appropriate then HAPs due to their rapid deployment, quick mobility, and cost‐effectiveness. Furthermore, LAPs can be used for collecting sensor data from the ground. In this case, LAPs can be readily replaced or recharged as needed. In contrast, HAPs are preferred due to their long endurance (days or months) operations and wider ground coverage [1]. However, operational cost of HAPs is high and their deployment time is significantly longer.

      UAV can also be categorized based on their structure into rotary‐wing and fixed‐wing UAVs. Rotary‐wing UAVs are powered by rotating blades, and based on the number of blades they are termed as either quadcopter with four blades, hexacopter with six blades, or octocopter with eight blades. On the other hand, fixed‐wing UAVs include those that are driven by propellers with small size engine and have wings that are fixed. However, the flight time of UAVs relies on several key factors, such as type, weight, speed, energy sources (battery or engine), and trajectory of the UAV.

Schematic illustration of aerial user equipment and aerial base station.