Carl Friedrich von Weizsäcker. Ino Weber
Чтение книги онлайн.

Читать онлайн книгу Carl Friedrich von Weizsäcker - Ino Weber страница 10

Название: Carl Friedrich von Weizsäcker

Автор: Ino Weber

Издательство: Bookwire

Жанр: Философия

Серия:

isbn: 9783861910329

isbn:

СКАЧАТЬ in bewusster Wahrnehmung (eben durch physikalische Messungen) erst erzeugen können. Subjektiv ist dabei eigentlich nicht die menschliche Wahrnehmung selbst, sondern die im Prinzip willkürlich gewählte Art der Messung.

      Plancks Entdeckungen hoben bereits den Wissensstand in Bezug auf die atomare Welt auf ein völlig neues Niveau. Man wusste nun: Atome geben ihre Energie nicht stetig, sondern in Portionen ab (nach vorheriger Anregung bzw. bei entsprechenden Temperaturen). Dies ist die physikalische Grundlage der sogenannten Quantentheorie. Was noch sehr wichtig ist: Strahlungen (elektromagnetische Wellen) können auch als Teilchen verstanden werden. Umgekehrt ist im Prinzip jedwede Materie ebenso als Welle deutbar.

      Da die Energie eine universelle physikalische Größe darstellt, ist es problemlos möglich, die beiden „Phänomene“ ineinander umzurechnen. Mit dem Begriff „Phänomen“ und überhaupt mit anschaulichen Deutungsversuchen muss man jedoch sehr vorsichtig umgehen; denn beide Vorstellungen (Welle und Teilchen) sind überhaupt keine real existierenden Zustände. Es sind lediglich gleichberechtigte physikalische Modellvorstellungen. Man spricht deshalb vom sogenannten Welle/Teilchen-Dualismus.

      Welche „Existenzweise“ die wahre ist, was nun genau der Natur entspricht, kann vom Physiker nicht entschieden werden.

      Aufbauend auf Versuchen des deutschen Physikers Philip Lenard, der den „Fotoeffekt“ entdeckte, untersuchte Planck die Wechselwirkung von elektromagnetischer Strahlung (Licht) mit Materie theoretisch noch genauer. Mit seiner neuen Formel (E = h x f) konnte er die experimentellen Ergebnisse exakt erfassen und z.B. die spektrale Verteilung der Temperaturstrahlung vorausberechnen.15

      Jedoch bedeutete die Quantelung der Energie, die zur Erklärung notwendig war, einen eklatanten Bruch mit der bisherigen „klassischen“ Physik; denn die alte Physik konnte sich die Natur bislang nur als eine kontinuierlich gestaltete Welt vorstellen. Diskontinuierlich auftretende physikalische Eigenschaften waren undenkbar. Es galt der Spruch: „Die Natur macht keine Sprünge.“

      Bei Rutherfords Streuversuch hatte man theoretisch Folgendes erwartet: Da die Atome im Metall sehr dicht gelagert sind, kann keine Teilchenstrahlung hindurchdringen. Aber das Ergebnis sah tatsächlich völlig anders aus: Fast die gesamte Strahlung durchdringt nämlich die Atome der Metallfolie ungehindert, und nur ein sehr geringer Teil wird zurückgeworfen.16

      Aus den Experimenten drängt sich die wichtige Schlussfolgerung auf, dass die Atome größtenteils aus leerem Raum bestehen. Fast die gesamte Masse ist im winzigen Atomkern konzentriert. Die Größe des Atomkerns beträgt nur ca. ein Zehntausendstel des Atomdurchmessers. Der Atomkern ist positiv geladen, denn die Alphateilchen werden durch Abstoßung gleicher elektrischer Ladungen daran gestreut.

      Von nun an gibt es drei Arten von Atomphysik, je nachdem ob man die äußere Atomhülle (bestehend aus Elektronen), den Atomkern (bestehend aus Protonen und Neutronen) oder sonstige Elementarteilchen (die man bald noch finden sollte) untersucht. Somit ist auch der Unterschied zwischen Atom- und Kernphysik klar, obwohl es natürlich Überschneidungen in den Experimenten gibt.

      Das von Niels Bohr in die Diskussion gebrachte Komplementaritätsprinzip hat Generationen von Physikern Kopfzerbrechen bereitet und ist auch heute noch nicht endgültig verstanden. Gerade Carl Friedrich von Weizsäcker machte sich darum verdient, die philosophischen Konsequenzen der Quantentheorie und speziell auch der geheimnisvollen Komplementarität bis in die letzten Feinheiten zu durchdenken. Dabei liegt es in der Natur der Sache, dass die Erkenntnis vorerst nur dadurch fortschreiten kann, Denkfehler und vorschnelle populärwissenschaftliche Deutungen aufzudecken und zu vermeiden. Eine positive Aussage mit neuem, vielleicht auch revolutionärem oder gar endgültigem Wahrheitsgehalt darf man sich wohl nicht erwarten. Weizsäcker war wie kaum ein anderer dazu befähigt, die Tatsachen und ihre korrekte Interpretation seriös und auch relativ leicht verständlich auszubreiten.

       Leistungen als Physiker

      Seine Liste von Veröffentlichungen in wissenschaftlichen Zeitschriften ist außerordentlich lang. Sie beginnt 1931, als Weizsäcker noch Student war, mit dem Thema „Ortsbestimmung eines Elektrons durch ein Mikroskop“ (Zeitschrift für Physik). Weizsäcker arbeitete nur bis 1957 offiziell als Physiker und war dann als Philosophie-Professor tätig. 1937 und 1938, in den Jahren nach der Habilitation, beschäftigte er sich mit der Höhenstrahlung, neuen Modellvorstellungen vom Bau der Atomkerne und „Elementumwandlungen im Innern der Sterne“ (Physikalische Zeitschrift). Nach dem Krieg wird die Entstehung des Planetensystems, also Astrophysik, Weizsäckers großes Thema. Herausragend ist jedoch eine Arbeit des Jahres 1939 mit dem Thema „Kernumwandlungen als Quelle der Sternenergie“.

      Etwas lapidar, aber nicht ohne Stolz bemerkte er in seiner „Selbstdarstellung“: „Ich dachte mir den Kohlenstoffzyklus aus, den Bethe gleichzeitig fand und gründlicher ausarbeitete.“ 17 Eine gewisse Tragik ist darin zu sehen, dass Hans Bethe, der während des Krieges in die USA auswanderte, allein die wissenschaftlichen Lorbeeren erntete.

      Bethe erhielt den Nobelpreis zwar erst im Jahr 1967, aber genau für jenes Thema des Jahres 1938, womit auch Weizsäcker befasst gewesen war. Immerhin blieb Weizsäcker der relativ schwache Trost, als Mitentdecker des Bethe-Weizsäcker-Zyklus in den Lehrbüchern genannt zu werden.

      Was den verwehrten Ruhm anbelangt, könnte man die Entscheidung des Nobelpreis-Komitees als ungerecht empfinden, doch im Jahr 1967 war nur Bethe noch voll als Physiker tätig, während Weizsäcker sich längst völlig anderen Aufgaben widmete. Auch die Frage der „Gleichzeitigkeit“ von Entdeckungen ist eine diffizile Sache. Die Frage, wer denn wirklich der Erste war, der den entscheidenden Schritt unternahm, musste in der Geschichte der Wissenschaften immer wieder gestellt werden. Im Fall Weizsäckers scheint klar zu sein, dass er tatsächlich als Erster, nämlich schon 1935, die Grundformel zur Berechnung der Bindungsenergie im Atomkern präsentierte, nur wurde sie dann durch Hans Bethe und Enrico Fermi weiter verfeinert und schließlich als „Bethe-Weizsäcker-Formel“ bezeichnet.

      Die erwähnte Formel ist nicht zu verwechseln mit dem sogenannten „Bethe-Weizsäcker-Zyklus“. Er beschreibt eine mehrstufige, kreisförmige Reaktion, die vor allem eins liefert: Energie! Bei dieser Reaktion entstehen verschiedene Isotope von Kohlenstoff, Stickstoff und Sauerstoff. Im ersten Schritt reagiert Kohlenstoff, C-12 (also das bei Weitem häufigste Isotop dieses Elements), mit Wasserstoff zu Stickstoff N-13. Die Grafik verdeutlicht die einzelnen Reaktionen, die sich in den Atomkernen abspielen, wobei vier Fusionen auftreten und zwei Zerfälle. Jeder Atomkern enthält Protonen und Neutronen, nur beim Element Wasserstoff enthält der Kern lediglich ein Proton. An den Reaktionen des Bethe-Weizsäcker-Zyklus sind ausschließlich Atomkerne und einige Elementarteilchen beteiligt. Wasserstoff liegt hier in Form des bloßen Atomkerns, ohne Elektron, also als sogenanntes Proton vor. N-13 zerfällt wieder zu C-13 und einem Positron. Jetzt reagiert C-13 mit Wasserstoff zu N-14. Bei den nächsten beiden Schritten entsteht Sauerstoff, der wieder zerfällt, so dass N-15 übrig bleibt. Eine erneute Fusion des N-15 mit Wasserstoff ergibt nun im letzten Schritt neben C-12 auch etwas völlig Neues, nämlich Helium. Da hier wieder das Kohlenstoffisotop C-12 freigesetzt wird, das am Anfang die Reaktionen eingeleitet hat, ist der Zyklus somit komplett. Als Endergebnis aller genannten Zwischenschritte des Bethe-Weizsäcker-Zyklus wurde durch Kernfusion ein neues Element erzeugt. Was diesen Vorgang so besonders macht: Es wird ein ungeheurer Überschuss an Energie freigesetzt. Das ist, grob gesagt, der maßgebende atomphysikalische Prozess, der im Inneren der Sonne abläuft und diejenige Energie liefert, von der wir auf der Erde profitieren, die hier das Leben erst ermöglicht. Damit ist das alte Rätsel um die Entstehung der Sonnenenergie gelöst. Die materielle Grundlage dieser Energie ist letztlich die Kernfusion.

image

      Grafik: Bethe-Weizsäcker-Zyklus.

СКАЧАТЬ