Название: Teppichboden - der textile Tausendsassa
Автор: Norbert Arnold
Издательство: Автор
Жанр: Отраслевые издания
isbn: 9783778309322
isbn:
Üblicherweise ist die Abriebfestigkeit der Wollfaser niedrig. Deshalb muss zur Herstellung qualitativ hochwertiger Schurwoll-Teppichböden verhältnismäßig viel Polmaterial eingesetzt werden, was einen hohen Produktpreis zur Folge hat. Aus diesen Gründen sind Teppichböden aus diesem Material eher für den Einsatz in repräsentativen, weniger stark beanspruchten Räumen geeignet. Unter dem Aspekt der Strapazierfähigkeit sind Schurwoll-Teppichböden für den Objektbereich nicht geeignet. Auch Stuhlrollen- und Treppeneignung liegen höchst selten vor. Aufgrund ihrer klimaregulierenden Fähigkeiten wird Schurwolle im privaten Bereich gerne in Wohn- und Schlafzimmern eingesetzt.
Der dachziegelartige Aufbau der Wollfaser erschwert es dem trockenen Schmutz, in die Faser einzudringen. Zusätzlich ummantelt ein Häutchen namens „Epicuticula“ jeden Ziegel der äußeren Hülle. Es sorgt dafür, dass Flüssigkeiten (Tropfengröße und größer) nicht sofort in die Faser eindringen, Feuchtigkeit (Gasform und mikrofeine Tröpfchen) kann jedoch ungehindert ins Faserinnere gelangen. Dafür sorgt allerdings nicht – wie immer wieder gerne, aber falsch gelehrt – das Wollfett, sondern eben die Epicuticula – ein Häutchen, das schützend über jeder einzelnen Schuppe liegt.
Die vorsortierte Wolle wird in europäischen Wäschereien, Kämmereien oder Spinnereien genauestens nach Qualitäten sortiert und eingeteilt. Das gelbbraune, penetrant riechende Wollfett bindet in mehr oder minder großem Maße den Staub und die erdigen Bestandteile, die sich im Laufe der Wachstumszeit im Wollvlies ablagern. Da sich das Fett in Wasser nicht löst, kann es nur unter Zuhilfenahme chemischer Zusätze entfernt werden. Das entfernte Fett findet als Lanolin u. a. Einsatz in der kosmetischen Industrie. So findet es beispielsweise auch Verwendung in Lippenstiften, Salben und Cremes sowie Schuhpflegemitteln.
Die Filzbarkeit ist eine wertvolle, ausschließlich der Wolle eigene Fähigkeit, durch die sie sich von allen anderen Textilrohstoffen unterscheidet. Das Filzvermögen der Wolle ist neben der Kräuselung in erster Linie abhängig von der Oberflächenbeschaffenheit des Wollhaares. Der Filzprozess besteht darin, dass bei den wirr durcheinanderliegenden Wollhaaren durch mechanische Bearbeitung ein gegenseitiges Reiben der Deckschuppen stattfindet. Für den mechanischen Filzprozess ist möglichst feine, hochbogig gekräuselte Wolle erforderlich, weiterhin die Anwendung von Druck, Wärme (Reibungswärme), Wasser und seifenähnliche Substanzen.
Lagert man gewaschene, absolut trockene Wolle in einem Raum mit hoher relativer Luftfeuchtigkeit, so saugt sich die Wolle in ca. 24 Stunden in bedeutendem Umfange voll Feuchtigkeit. Diese Eigenschaft bezeichnet man als Hygroskopizität; sie ist bei der Wolle, die bis zu 35 % ihres Eigengewichtes an Feuchtigkeit aufnehmen kann, besonders stark ausgeprägt.
Ausreichend vorhandene Luftfeuchtigkeit verhindert, dass sich Wolle elektrostatisch auflädt. Entzieht man der Wollfaser die Feuchtigkeit, kann es zu einer spürbaren elektrostatischen Aufladung kommen. Außerdem ist das hervorragende Wiedererholungsvermögen gestört. Woll-Qualitäten sind selbstverständlich – genau wie synthetische Bodenbeläge – durch Beimischung leitfähiger Garntypen antistatisch und sogar ableitfähig ausrüstbar.
Als nachwachsender Rohstoff muss hochwertige Wolle unbedingt dann vom lebenden Schaf geschoren sein, wenn sie als „Reine Schurwolle“ vermarktet wird. Wolle hat ein ausdrucksvolles Erscheinungsbild, ist sehr sprungelastisch in ihrem Wiedererholungsvermögen und erzielt bei Einfärbung vollendete Tiefenwirkung. Wolle ist in der Lage, Feuchtigkeit in relativ großen Mengen aufzunehmen und bei Bedarf wieder abzugeben. Somit befähigt sie diese Eigenschaft, die raumklimatischen Verhältnisse weitestgehend konstant zu halten.
Die Pflege im Hinblick auf Staub und trockenen Schmutz ist durch den schuppenartigen Aufbau der Wollfasern recht einfach. Sie lassen sich bequem absaugen. Sollte die Wollware allerdings einmal intensiv verschmutzt worden sein, ist eine Reinigung nur durch eine relativ aufwendige Nassreinigung erfolgreich. Die Wolle, eine Proteinfaser, die aus Aminocarbonsäuren besteht, den Flammen ausgesetzt, riecht nach verbranntem Horn – sie schmilzt nicht, sondern verkohlt.
Grundsätzlich ist Wolle nach DIN EN 13501 - 1 – Bfl –s1 schwer entflammbar.
2.1.2 Synthesefasern
Die Geschichte der synthetischen organischen Faserstoffe beginnt am 4. Juli 1913. An diesem Tag beantragte der Deutsche F. Klatte von der „Chemischen Fabrik Griesheim Elektron“ aufgrund der Polymerisationsreaktion von Vinylverbindungen den Patentschutz zur Herstellung von Fasern.
Praktische Bedeutung hatte die Erfindung Klattes zunächst genauso wenig wie die Erfindung des deutschen Nobelpreisträgers Hermann Staudinger im Jahre 1927, der mit der Polyoxymethylen-Faser die erste Synthesefaser schuf.
Synthesefasern sind die wichtigste Gruppe der Chemie-Fasern. Nach anfänglichen Schwierigkeiten konnten sie sich aufgrund technischer Veränderungen im Laufe der Zeit gegen Naturfasern durchsetzen. Positiv beeinflusst wurde dieser Trend u. a. durch das günstigere Preisgefüge und vielfältigere Einsatzmöglichkeiten.
Die gleichmäßige Herstellung der Synthesegarnoberfläche bewirkt eine ebenso gleichmäßige Färbung und Weiterverarbeitung des Materials. Das Resultat ist ein ebenmäßigeres Endprodukt, als es bei der Herstellung mit Naturfasern möglich wäre. Der große Marktanteil der Synthesefasern beruht auf ihren universellen Anwendungsbereichen. Synthetische Fasern finden bei der Herstellung von Teppichböden Einsatz als Rückenbeschichtung, Trägergewebe bzw. Trägervlies, Schuss- und Kettfaden sowie als Polmaterial.
Der größte Vorteil der Synthese-Fasern gegenüber den Naturfasern ist die Möglichkeit, sie immer in der annähernd „selben“ Qualität erzeugen zu können. Theoretisch sind sie in jedem gewünschten Querschnitt und jeder denkbaren Farbe herstellbar. Somit können sie dem späteren Verwendungszweck optimal angepasst werden. Als weitere Vorteile gelten u. a. Maßstabilität, Lichtechtheit, Abriebfestigkeit sowie Verrottungs- und Chemikalienbeständigkeit.
Durch Faserquerschnitt, Melange oder Musterung, Mattierung und Farbe wird die Schmutzunempfindlichkeit entscheidend bestimmt.
a) Polyamid (PA)
Am 3. Juli 1931 meldete die Fa. Du Pont de Nemours & Co. in den USA ein Patent zur Herstellung von Polyamidfasern an. Einem Team von Wissenschaftlern unter der Leitung von Dr. Wallace H. Carothers war es gelungen, aus Hexamethylendiamin und Adipinsäure das heutige Nylon in verspinnbarer Form herzustellen. Im Jahre 1938 brachte Du Pont es unter der Bezeichnung „Polyamid 6.6“ auf den Markt.
Ein zweites Verfahren zur Erzeugung von Polyamid schuf der deutsche Chemiker Paul Schlack und verwendete hierzu Aminocapronsäure als Ausgangsmaterial. Ihm gelang es im Januar 1938 (Patentanmeldung am 11. Juni 1938), durch Erhitzen des Lactams mit Salzsäure ein lineares Polyamid, zu erhalten. Ein Verfahren, das mit den Schutzrechten der Fa. Du Pont nicht kollidierte und zur Erzeugung von „Polyamid 6“ führte, das als Perlon auf den Markt kam.
Die Pflege von Polyamidgarn ist recht einfach. Es lässt sich bequem absaugen. Durch die geschlossene Kunststoffoberfläche kann auch flüssiger Schmutz nicht ohne Weiteres in die Faser eindringen. Nur aggressive Flecksubstanzen können zum Problemfall werden. Selbst wenn die Polyamidware einmal intensiv verschmutzt worden sein sollte, ist eine Reinigung auch mit „Trockenreinigungsverfahren“ СКАЧАТЬ