Название: Biodiesel Technology and Applications
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119724933
isbn:
218. P. Lozano, Enzymes in neoteric solvents: From one-phase to multiphase systems, Green Chem. 12, 555, 2010. https://doi.org/10.1039/b919088k.
219. L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature. 399 (1999) 28–29. https://doi.org/10.1038/19887.
220. P. Lozano, J.M. Bernal, M. Vaultier, Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/ supercritical carbon dioxide biphasic systems, Fuel. 90, 3461–3467, 2011. https://doi.org/10.1016/j.fuel.2011.06.008.
221. D. Yu, C. Wang, Y. Yin, A. Zhang, G. Gao, X. Fang, A synergistic effect of microwave irradiation and ionic liquids on enzyme-catalyzed biodiesel production, Green Chem. 13, 1869, 2011. https://doi.org/10.1039/c1gc15114b.
222. B.M. Nogueira, C. Carretoni, R. Cruz, S. Freitas, P.A. Melo, R. Costa-F??lix, J.C. Pinto, M. Nele, Microwave activation of enzymatic catalysts for bio-diesel production, J. Mol. Catal. B Enzym. 67, 117–121, 2010. https://doi.org/10.1016/j.molcatb.2010.07.015.
223. M.L.B. Queiroz, R.F. Boaventura, M.N. Melo, H.M. Alvarez, C.M.F. Soares, Á.S. Lima, M.F. Heredia, C. Dariva, A.T. Fricks, Microwave activation of immobilized lipase for transesterification of vegetable oils, Quim. Nova., 2015. https://doi.org/10.5935/0100-4042.20150031.
224. Y. Zhang, X. Xia, M. Duan, Y. Han, J. Liu, M. Luo, C. Zhao, Y. Zu, Y. Fu, Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation, J. Mol. Catal. B Enzym. 123, 35–40, 2016. https://doi.org/10.1016/J.MOLCATB.2015.10.013.
225. S. Shah, M. Gupta, The effect of ultrasonic pre-treatment on the catalytic activity of lipases in aqueous and non-aqueous media, Chem. Cent. J. 2, 1, 2008. https://doi.org/10.1186/1752-153X-2-1.
226. G. Kumar, D. Kumar, Poonam, R. Johari, C.P. Singh, Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication, Ultrason. Sonochem. 18, 923–927, 2011. https://doi.org/10.1016/J.ULTSONCH.2011.03.004.
227. D. Yu, L. Tian, H. Wu, S. Wang, Y. Wang, D. Ma, X. Fang, Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435, Process Biochem. 45, 519–525, 2010. https://doi.org/10.1016/J.PROCBIO.2009.11.012.
228. G. V. Waghmare, V.K. Rathod, Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition, Ultrason. Sonochem. 32, 60–67, 2016. https://doi.org/10.1016/j.ultsonch.2016.01.033.
229. C.M. Trentin, A.S. Popiolki, L. Batistella, C.D. Rosa, H. Treichel, D. de Oliveira, J.V. Oliveira, Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system, Bioprocess Biosyst. Eng. 38, 437–448, 2015. https://doi.org/10.1007/s00449-014-1316-0.
230. P.B. Subhedar, C. Botelho, A. Ribeiro, R. Castro, M.A. Pereira, P.R. Gogate, A. Cavaco-Paulo, Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with Lipozyme TL-IM, Ultrason. Sonochem. 27, 530–535, 2015. https://doi.org/10.1016/J.ULTSONCH.2015.04.001.
231. H. Yu, H. Yue, P. Halling, Optimal experimental design for an enzymatic bio-diesel production system, IFAC-PapersOnLine. 48, 1258–1263, 2015. https://doi.org/10.1016/j.ifacol.2015.09.141.
232. P. Tufvesson, J. Lima-Ramos, N. Al Haque, K. V. Gernaey, J.M. Woodley, Advances in the process development of biocatalytic processes, Org. Process Res. Dev. 17, 1233–1238, 2013. https://doi.org/10.1021/op4001675.
233. Q.K. Beg, V. Sahai, R. Gupta, Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor, Process Biochem. 39, 203–209, 2003. https://doi.org/10.1016/S0032-9592(03)00064-5.
234. B. Manohar, S. Divakar, Applications of surface plots and statistical designs to selected lipase catalysed esterification reactions, Process Biochem. 39, 847–853, 2004. https://doi.org/10.1016/S0032-9592(03)00192-4.
235. Q.K. Beg, R.K. Saxena, R. Gupta, Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology, Biotechnol. Bioeng. 78, 289–295, 2002. https://doi.org/10.1002/bit.10203.
236. D.S. Rana, K. Thèodore, G.S. Narayana Naidu, T. Panda, Stability and kinetics of β-1,3-glucanse from Trichoderma harzianum, Process Biochem. 39, 149–155, 2003. https://doi.org/10.1016/S0032-9592(02)00323-0.
237. D. Ba, I.H. Boyaci, Modeling and optimization: Usability of response surface methodology, J. Food Eng. 78, 836–845, 2007. https://doi.org/10.1016/j.jfoodeng.2005.11.024.
238. G.-T. Jeong, D.-H. Park, Response surface methodological approach for optimization of enzymatic synthesis of sorbitan methacrylate, Enzyme Microb. Technol. 39, 381–386, 2006. https://doi.org/10.1016/J.ENZMICTEC.2005.11.046.
239. J.-F. Shaw, H.-Z. Wu, C.-J. Shieh, Optimized enzymatic synthesis of propylene glycol monolaurate by direct esterification, Food Chem. 81, 91–96, 2003. https://doi.org/10.1016/S0308-8146(02)00383-7.
240. H. V. Lee, R. Yunus, J.C. Juan, Y.H. Taufiq-Yap, Process optimization design for jatropha-based biodiesel production using response surface methodology, Fuel Process. Technol. 92, 2420–2428, 2011. https://doi.org/10.1016/j.fuproc.2011.08.018.
241. C.J. Shieh, H.F. Liao, C.C. Lee, Optimization of lipase-catalyzed biodiesel by response surface methodology, Bioresour. Technol. 88, 103–106, 2003. https://doi.org/10.1016/S0960-8524(02)00292-4.
242. СКАЧАТЬ