Biodiesel Technology and Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biodiesel Technology and Applications - Группа авторов страница 24

Название: Biodiesel Technology and Applications

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119724933

isbn:

СКАЧАТЬ oil molar ratio was 3:1. Resultant ester yield was more than 99% within just 3 h when reaction system was accompanied with microwave while conventional heating produced yield about 57% with the same reactions conditions as provided in case of microwave reaction system for biodiesel production. So, microwave-assisted reaction produced better and faster biodiesel yield compared to conventional heating reaction system [224, 225].

      Researchers have produced some good results in the past couple of years using ultrasonication method. Ultrasound-assisted transesterification of soybean oil using ethanol and Novozyme 435 resulted in ~78 % yield in just 1 h. this method of assistance has the potential to become alternative to the alkali catalyzed or conventional enzymatic biodiesel production [229]. In another experiment, sunflower oil and methanol were used for biodiesel production in the presence of Lipozyme TL-IM under ultrasound-assisted system. Results indicated that ultrasound assistance suppresses the much needed requirement of using methanol, making the reaction fast and clean [230]. Conventional transesterification using bath process technique requires a lot of time because phase separation and recovery of glycerol and biodiesel is a time-consuming process. Use of ultrasound and microwave is very helpful in this regard and it has been proved that ultrasound and microwave assistance make the reaction rapid and cost efficient.

      Process modeling, simulation, and statistical approaches are the best way to tackle this problem. Modeling and simulation of the processes are the base of in silico experimentation that provides similar environmental conditions of the processes just like real system without so much investment. This not only provides process mechanism information but also gives support for process development. Reaction optimization is difficult to achieve and it requires a lot of efforts and financial support. While optimization, high efficiency of one of many parameters sometimes reduces the demand of some other parameter and reaction product may not alter so much. For example, according to Tufvesson et al. [232], if enzyme has excellent catalytic activity then this minimizes the need of enzyme specific activity and similarly, if enzyme catalytic activity is fair enough to product healthy amount of product then ultimately need of efficient downstream processes will be reduced. So, all in all optimization of chemical processes is difficult and tedious to achieve. That is why in silico experimentation is helpful in process of optimization and handling.

      A lot of research has been done using RSM to optimized chemical reactions. For example, protease production in a bioreactor taken from Bacillus mojavensis and statistically optimization of media [233] and lipase catalyzed esterification reactions [234]. RSM is widely used for optimization but it can also be used to determine kinetic constants and enzyme stability. Kinetic constants for protease derived from Bacillus mojavensis was determined using RSM [235]. According to Rana et al., kinetic and stability of b-1,3-glucanase from Trichoderma harzianum and alcohol dehydrogenase was investigated using RSM [236]. RSM for optimization is carried out in 3 stages, (a) independent variable and their level is determined, (b) experimental design is selected then model equation is predicted and verified, and (c) different response plots are obtained and optimum points are determined [237]. The most common and successfully implemented design used in RSM is central composite rotatable design (CCRD) for the optimization of reactions [238, 239]. Like every other thing, RSM surely has advantages as well as disadvantages (Table 1.8). Like other chemical processes, optimization of enzymatic catalyzed biodiesel production process has been widely investigated using RSM statistical approach [241].

      According to Sheih et al. [241], conversion of soybean oil into biodiesel was catalyzed using lipase from Rhizomucor miehei (Lipozyme IM-77) in the presence of methanol which was being investigated in this experiment. RSM was implemented with having 5-level-5-factor CCRD. Through this design and RSM, effect of time, methanol-to-oil molar СКАЧАТЬ