Cybersecurity and Third-Party Risk. Gregory C. Rasner
Чтение книги онлайн.

Читать онлайн книгу Cybersecurity and Third-Party Risk - Gregory C. Rasner страница 21

СКАЧАТЬ to continue as a threat in 2021 and beyond. WannaCry was the biggest ransomware event so far, with over 250,000 systems affected, in 150 countries, with an average of $300,000 paid per system, and over 176 types of encryption used.Virus: A type of malicious code (or program) written to alter the way a computer operates, and designed to spread from one computer to another. The Mydoom virus is the biggest known virus to date, with an estimated $38 billion damages in 2014.Spyware/adware: These include the annoying pop‐up advertisements on search engines, which redirect your search. Some arrive as browser add‐ons purporting to help save money or time. Other instances include being placed as malware on a system or as spyware performing key logging (i.e., the action of recording the keys struck on a keyboard). CoolWebSearch is a browser add‐on that took advantage of security vulnerabilities in Internet Explorer to hijack it, change settings, and send the browsing history to the software publishers.Trojan: The most common type of cyberattack, it typically arrives in the form of a legitimate‐looking email asking the reader to perform an update or click a link for something. The malware is then unknowingly downloaded into the target's computer; hence, the name Trojan. Storm Worm, in 2007, is a well‐known type of trojan horse attack. It tricked victims into clicking an email link to an article that downloaded trojan malware. It affected over 1.5 million systems, and is estimated to have cost $10 billion in damages.

      Analysis of a Breach

      Now that we've covered all the types of cybercrimes, bad actors, and breach threats, let's discuss how a breach is typically carried out. It can be broken down into five main steps: research, intrusion, lateral movement, privilege escalation, and exfiltration. CEO John Chambers once said, “There are two types of companies: Those that have been hacked, and those who don't know yet that they have been hacked.”

      Phase 2: Intrusion As in the research phase, intrusion can take months before discovery. This phase involves the attacker being focused on breaking into the perimeter of the target, with a persistent foothold being their ultimate goal. Whether they used a phishing campaign to steal credentials or used hacking tools to crack into the network, attackers usually are able to do this and remain nearly invisible to the victim. Once they are inside the network, the attacker will work to ensure their access is long term in the anticipation of revisiting on a regular basis.

      Phase 3: Lateral Movement After the access becomes more persistent (the attacker has a solid foothold in the target network), the attacker's goal is to find and access more systems within the network. They will search files, databases, password files, sensitive data locations, and network mapping for this work. Most often, the attacker is impersonating an authorized user, so detection is difficult without robust countermeasures such as SIEM and IDS/IPS. This phase generally takes place months or weeks prior to detection.

      Phase 4: Privilege Escalation The majority or totality of sensitive information in most company networks is (or should be) protected behind layers of defense that require special access rights. In cases where these user accounts have elevated access, such as in the case of administrators or data owners, this is called Privileged Access. This type of access allows the attacker to get at the data needed, so they must find a way to escalate their initial access. Once this access is obtained, then the attacker will go after their internal targets: sensitive company documents, PII, mail servers, document systems, and other areas.

      Phase 5: Exfiltration In this final phase, the attacker is in the home stretch. They have attained the intel necessary, broken into the network, looked around for the stuff to steal, gained access to those systems, and are now ready to steal it. They steal the data, sometimes damaging critical systems used to track their movements and disrupt operations. Some destroy any evidence with a ransomware attack at this point. Some linger in the network, if they think they are not detected, waiting for new opportunities to exploit their access. Once they have reached this stage, it is very difficult to stop the attack and the cost to the company increases the longer it goes undetected.

      The Third‐Party Breach Timeline: Target

      Research: HVAC vendors were likely targeted as this third party is used as a backdoor to gain access. An internet search could have produced information about how Target works with its vendors and likely would've shown vendor portals. Also easily found is the Microsoft study done on how Target uses its virtualization software, the MS Domain Name Server (DNS), its software for managing system configurations (Systems Center Configuration Manager [SCCM]), and other important intel about internal systems.

      Analysis then shows a phishing email was sent to Target's HVAC vendor, Fazio Mechanical, with malware that was a password‐stealing bot. It is suspected that this software sent stolen credentials to the attackers.

      Intrusion: Using the stolen credentials from Fazio Mechanical, attackers logged in to Target's systems via a vendor portal. Because they stole valid credentials, no alarms were sent. This type of credential from the vendor gave them the continuous access to make repeated attempts at the next steps for the breach.

      Privilege Escalation: As attackers moved laterally within the Target environment, the objective would be to find privileges that worked with the POS system. As they exploited these known vulnerabilities on the Microsoft and other systems they had identified in their reconnaissance, intrusion, and lateral movement phases, that data was leveraged to elevate themselves to be able to perform the last step.

      Exfiltration: The malware was distributed to the POS machines in such a fashion as to suggest it was an automated update, indicating that the attackers had attained privileged access to the central system that updates those machines. Because the malware was custom written, virus scanners did not have their signature to detect it. As the payment cards were swiped, their data was stored in a СКАЧАТЬ