Рассуждения об основах математики. Анатолий Николаевич Овчинников
Чтение книги онлайн.

Читать онлайн книгу Рассуждения об основах математики - Анатолий Николаевич Овчинников страница 4

СКАЧАТЬ style="font-size:15px;">      то он отчетливо должен понимать, что в эту одну формулу математический аппарат совершенно безупречно вложил два решения:

      1-ое, когда

      и оно (и только оно) реализуется в опытах.

      2-ое, когда

      и оно никогда не реализуется в опытах.

      Аналогичная ситуация возникает, когда мы говорим о числе произошедших событий N и их приращении ΔN. В реальности ни dt, ни dN никогда не бывают математическими дифференциалами (назовем их «полудифференциалами»). Но математик-то обязан их объявить дифференциалами потому, что этого требует непротиворечивость математического аппарата.

      Таким образом, если некто смотрит на формулу

      и забывает о сказанном выше, у него возникают мысли о возможности создания машины времени

      Именно математический аппарат провоцирует человека (очарованного этим аппаратом) на создание машины времени. И наоборот, никакие реальные опыты не дают нам оснований говорить об обратном течении времени. В вопросе о машине времени математический аппарат сыграл «злую шутку» с естествоиспытателем. Ниже мы увидим, что такие «шутки» математический аппарат проделывает постоянно.

      Пример 4. Четырехмерное пространство-время. Теория относительности имеет математически компактное изложение при введении четырехмерного пространства-времени. И это изложение будет математически безупречно. Но какое отношение все это имеет к реальному пространству? Никакого. Реальное пространство – трехмерно, а не четырехмерно, и это – экспериментальный факт. В реальном пространстве нет места для четвертой оси Эйнштейна ict (размерность которой есть длина, такая же, как и остальных осей). Геометр материалист скажет: «Господа, вы утверждаете, что существует четырехмерное пространство-время. Тогда извольте построить, упомянутые вами четыре оси в реальном пространстве. Правила построения обоснуйте и сообщите эти правила нам». Ясно, что из этого ничего не выйдет. Но почему мы забываем об этом экспериментальном факте, и всякий раз возвращаемся к воображаемому четырехмерному пространству-времени? Потому, что здесь мы как раз и забываем о том, что математический аппарат одинаково безупречно описывает как то, что происходит, так и то, что не происходит. А в теории относительности математический аппарат как раз и описывает то, что не происходит. Ни одна точка реального пространства не принадлежит воображаемому четырехмерному пространству-времени. Это различные непересекающиеся множества.

      Пример 5. Неевклидовы геометрии. Нам известно несколько геометрий. Однако адекватно положение дел в реальном пространстве описывает, лишь евклидова геометрия. Чтобы убедиться в этом, достаточно применить к любой геометрии аксиому существования геометрических объектов (более подробно см. в пятой главе [1]). Почему, однако, мы не оставляем попыток применять неевклидовы геометрии к описанию процессов в реальном пространстве? Потому, что и здесь мы как раз забываем о том, что математический аппарат одинаково безупречно описывает как то, что происходит, так и то, что СКАЧАТЬ