Название: Plattentektonik
Автор: Wolfgang Frisch
Издательство: Автор
Жанр: География
isbn: 9783534746354
isbn:
Abb. 3.16: Blockbild der Region des Roten Meeres. Die Grabenin-Graben-Struktur mit den hoch liegenden Grabenschultern an Land und dem zentralen Grabenspalt auf ozeanischer Kruste in der Mitte des Roten Meeres kommt topographisch deutlich zum Ausdruck. Im Schnitt durch die südliche Afar-Senke ist die kontinentale Kruste nicht durchgerissen.
Abb. 3.17: Spreizungsraten im Roten Meer und im Golf von Aden [DeMets et al. 1990]. Der zentrale Grabenspalt im Roten Meer ist grün umrandet. Die Atlantis-II-Tiefe ist eine von mehreren Senken darin, die erzreiche Schlämme enthalten.
Das Dehnungsfeld der Basin-and-Range-Provinz
Kontinentale Grabenbrüche sind lang gestreckte Zonen, die eine auf den Grabenbereich gebündelte Dehnungszone darstellen und den Zerfall eines Kontinents einleiten können. Es gibt aber auch breite Dehnungsfelder, die von hintereinander gestaffelten Gräben gekennzeichnet sind. Dies ermöglicht eine entsprechend größere Gesamtzerrung der kontinentalen Kruste, ohne dass diese auseinander bricht und sich neue ozeanische Kruste bildet. Zwischen den Gräben können Horste entwickelt sein, das sind stehen gebliebene oder infolge geringerer Ausdünnung nur wenig abgesenkte Schollen. Ein solches Graben-Horst-Feld bildet z. B. der Untergrund des Pannonischen Beckens, der im Miozän und Pliozän eine bedeutende West-Ost-Dehnung erfuhr (Kap. 13).
Zum anderen können Metamorphe Dome, das sind buckelförmige Aufbrüche aus tieferen Stockwerken der Kruste, Rücken zwischen Senken bilden. Metamorphe Dome entstehen durch asymmetrische Grabenbildung (Abb. 3.4b). Ein riesiges Dehnungsfeld, das aus Metamorphen Domen und grabenartigen Senken besteht, ist die Basin-and-Range-Provinz in den westlichen USA (Abb. 3.1). Die Basin-and-Range-Provinz, die ebenfalls in West-Ost-Richtung gedehnt wurde und bis zu 600 km breit ist, umfasst eine Fläche, die in etwa der von Frankreich (550 000 km2) entspricht. Auf einer Reliefkarte wie einer geologischen Karte kommt die Basin-and-Range-Provinz sehr deutlich zum Ausdruck, weil die lang gestreckten Aufbrüche und Senken sehr unterschiedliche Gesteine enthalten: der Erosion ausgesetzte metamorphe Gesteine in den Aufbrüchen, angeschwemmte Sedimente mit dem Abtragungsschutt der Hochzonen in den Gräben (Abb. 3.18).
Abb. 3.18: Reliefkarte und geologische Skizze der Basinand-Range-Provinz in Nordamerika. Die Aufbrüche des metamorphen Sockels stellen vielfach Metamorphe Dome dar.
Während die Great Plains und das Colorado-Plateau in den zentralen und westlichen USA eine übernormal dicke Kruste von 40 – 50 km Mächtigkeit aufweisen, besitzt die angrenzende Basin-and-Range-Provinz nur eine um 30 km dicke Kruste. Vor ihrer Bildung war die Basin-and-Range-Provinz Teil des Colorado-Plateaus, das heute ein Hochplateau mit einer durchschnittlichen Höhe von 2000 m darstellt. Im Miozän, vor etwas weniger als 20 Millionen Jahren, kollabierte ein Teil dieses Plateaus, die Kruste dehnte sich und verminderte in einem dramatisch anmutenden geologischen Prozess ihre Mächtigkeit um durchschnittlich etwa 15 km. Schweremessungen und seismische Untersuchungen zeigen, dass die Basin-and-Range-Provinz von einem Kissen anomal leichten, heißen und teilweise geschmolzenen Mantelmaterials unterlagert wird. Sie ist zudem durch einen hohen Wärmegradienten ausgezeichnet.
Die Basin-and-Range-Provinz liegt in der Verlängerung des Ostpazifischen Rückens, der im Golf von Kalifornien an die Nordamerikanische Platte stößt (Abb. 2.10). Die Zone aufsteigender Mantelströme wurde hier vom nordamerikanischen Kontinent überfahren, was zu einer komplexen plattentektonischen Situation führte. Die im mittleren Tertiär überfahrene Wärmequelle des Ostpazifischen Rückens sorgte dafür, dass die Kruste darüber aufgeheizt und in größerer Tiefe aufgeweicht wurde, so dass sie schließlich unter ihrem Eigengewicht kollabieren konnte. Der Kollaps war mit einer erheblichen W-O-Dehnung verbunden. Die Dehnung erfolgte in der tieferen Kruste durch duktiles Fließen, in der Oberkruste (oberhalb ca. 12 – 15 km Tiefe) durch bruchhafte Verformung, die für die Entstehung von zahlreichen Schollen verantwortlich ist, die entlang gekrümmter Störungen verkippt wurden.
Eine andere Deutung geht davon aus, dass die Wärmequelle unter der Basin-and-Range-Provinz von aufsteigenden Mantelströmen stammt, die an der Subduktionszone der Farallon-Platte ausgelöst wurden [Scholz et al. 1971]. Die Farallon-Platte war einst jene Platte, die östlich des Ostpazifischen Rückens anschloss und heute in die Nazca-, Cocos- und Juan-de-Fuca-Platte (Abb. 1.2) zerfallen bzw. großteils subduziert ist. Über einer Subduktionszone bildet sich ein aufsteigender Mantelstrom (Kap. 7). Dieser Strom hätte sich unter der kontinentalen Lithosphäre gestaut. Als der Ostpazifische Rücken an die Subduktionszone stieß und sich die San-Andreas-Störung bildete, hätte der kompressive Druck auf die Nordamerikanische Platte nachgelassen und die starke Krustendehnung über der Wärmequelle ermöglicht. Dieses Modell ist insofern weniger wahrscheinlich, als Magmen, die über Subduktionszonen für längere Zeit aufsteigen, die Lithosphäre durchdringen und einen heftigen und chemisch charakteristischen Vulkanismus auf der Kruste darüber erzeugen.
Das asymmetrische Dehnungsmodell (Abb. 3.4b) kann die Entstehung der Basin-and-Range-Provinz gut erklären. Die Metamorphen Dome zwischen den Senken sind detailliert untersucht, und es ist dieses Gebiet, in dem die Theorie der Metamorphen Dome aufgestellt wurde [Wernicke 1981].
Die Entstehung Metamorpher Dome
Metamorphe Dome entwickeln sich aus einem asymmetrischen Rift entlang einer mäßig steil einfallenden großen abschiebenden Störungszone, die nach unten flacher wird und in der mittleren kontinentalen Kruste in eine duktile Scherzone übergeht [Lister & Davis 1989]. Die Scherzone wird dann wieder steiler und durchsetzt die untere Kruste und den lithosphärischen Mantel (Abb. 3.4b). Im Hangendblock, das ist der Block oberhalb der Scherzone, begleiten steilere, ebenfalls gekrümmte Abschiebungen die Scherzone und zerlegen diesen Block in dominoartig zergleitende Schollen (Abb. 3.19). Solche gekrümmte Störungen und Scherbahnen bezeichnet man als listrisch (griech. schaufelförmig). Durch die nach oben konkave Krümmung werden die über den Störungen liegenden Schollen verkippt.
Durch die Bewegung entlang des Abscherungshorizonts gelangen nicht bis sehr schwach metamorphe Gesteine СКАЧАТЬ