Finite Element Analysis. Barna Szabó
Чтение книги онлайн.

Читать онлайн книгу Finite Element Analysis - Barna Szabó страница 46

Название: Finite Element Analysis

Автор: Barna Szabó

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119426462

isbn:

СКАЧАТЬ left-parenthesis e Subscript r Baseline right-parenthesis Subscript upper E 1.25 79.49 7.50 2.80 1.63 1.12 4.80 1.15 99.52 4.06 1.63 0.97 0.67 3.92 1.05 29.56 1.24 0.53 0.32 0.22 1.77 0.95 18.89 1.16 0.52 0.32 0.22 2.41 0.85 42.94 3.26 1.52 0.94 0.67 9.84 0.75 60.39 5.14 2.47 1.56 1.11 22.37 0.65 76.07 6.86 3.39 2.16 1.56 42.91 0.55 91.80 8.44 4.28 2.76 2.00 76.22
Element number
α 1 2 3 4 5 left-parenthesis e Subscript r Baseline right-parenthesis Subscript upper E
1 0 0 0 0 0 0
2 11.00 61.24 15.31 7.02 4.55 2.45
3 20.09 4.69 98.83 16.16 9.24 4.62
4 36.98 8.41 17.24 30.13 14.02 8.00

      Errors in numerical integration can be particularly damaging. The reader should be mindful of this when applying the concepts and procedures discussed in this chapter to higher dimensions.

      The following problem is a prototype of an important class of engineering problems which includes the undamped vibration of elastic structures:

      where the primes represent differentiation with respect to x. For example, we may think of an elastic bar of length script l, cross‐section A, modulus of elasticity E, in which case kappa identical-to upper A upper E greater-than 0 given in units of Newton (N) or equivalent, the parameter c greater-than-or-equal-to 0 is the coefficient of distributed springs (normal upper N slash normal m normal m squared) and the parameter mu greater-than 0 is mass per unit length (kg/m = 1 0 Superscript negative 6 Baseline normal upper N normal s squared slash normal m normal m squared). The bar is vibrating in its longitudinal direction.

      The boundary conditions are:

u left-parenthesis 0 comma t right-parenthesis equals 0 comma u left-parenthesis script l comma t right-parenthesis equals 0

      and the initial conditions are

u left-parenthesis x comma 0 right-parenthesis equals f left-parenthesis x right-parenthesis comma StartFraction partial-differential u Over partial-differential t EndFraction vertical-bar Subscript left-parenthesis x comma 0 right-parenthesis Baseline equals g left-parenthesis x right-parenthesis

      where f left-parenthesis x right-parenthesis and g left-parenthesis x right-parenthesis are given functions in upper L squared left-parenthesis upper I right-parenthesis. Here we consider homogeneous Dirichlet boundary conditions. However, the boundary conditions СКАЧАТЬ