Finite Element Analysis. Barna Szabó
Чтение книги онлайн.

Читать онлайн книгу Finite Element Analysis - Barna Szabó страница 21

Название: Finite Element Analysis

Автор: Barna Szabó

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119426462

isbn:

СКАЧАТЬ minus u double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis Baseline period"/>

      Proof: Let e equals u minus u Subscript n and let v be an arbitrary function in upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis. Then

vertical-bar vertical-bar vertical-bar vertical-bar plus plus ev Subscript upper E left-parenthesis upper I right-parenthesis Superscript 2 Baseline identical-to one half upper B left-parenthesis e plus v comma e plus v right-parenthesis equals one half upper B left-parenthesis e comma e right-parenthesis plus upper B left-parenthesis e comma v right-parenthesis plus one half upper B left-parenthesis v comma v right-parenthesis period

      The first term on the right is double-vertical-bar e double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis Superscript 2, the second term is zero on account of Theorem 1.3, the third term is positive for any v not-equals 0 in upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis. Therefore double-vertical-bar e double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis is minimum.

      Theorem 1.4 states that the error depends on the exact solution of the problem u Subscript upper E upper X and the definition of the trial space ModifyingAbove upper S With tilde left-parenthesis upper I right-parenthesis.

      The finite element method is a flexible and powerful method for constructing trial spaces. The basic algorithmic structure of the finite element method is outlined in the following sections.

      The standard polynomial space of degree p, denoted by script upper S Superscript p Baseline left-parenthesis upper I Subscript st Baseline right-parenthesis, is spanned by the monomials 1 comma xi comma xi squared comma ellipsis comma xi Superscript p defined on the standard element

      (1.49)upper I Subscript st Baseline equals StartSet xi vertical-bar negative 1 less-than xi less-than 1 EndSet period

      The choice of basis functions is guided by considerations of implementation, keeping the condition number of the coefficient matrices small, and personal preferences. For the symmetric positive‐definite matrices considered here the condition number C is the largest eigenvalue divided by the smallest. The number of digits lost in solving a linear problem is roughly equal to log Subscript 10 Baseline upper C. Characterizing the condition number as being large or small should be understood in this context. In the finite element method the condition number depends on the choice of the basis functions and the mesh.

      Lagrange shape functions

      Lagrange shape functions of degree p are constructed by partitioning upper I Subscript st into p sub‐intervals. The length of the sub‐intervals is typically 2 slash p but the lengths may vary. The node points are xi 1 equals negative 1, xi 2 equals 1 and negative 1 less-than xi 3 less-than xi 4 less-than midline-horizontal-ellipsis less-than xi Subscript p plus 1 Baseline less-than 1. The ith shape function is unity in the ith node point and is zero in the other node points:

      (1.50)upper N Subscript i Baseline left-parenthesis xi right-parenthesis equals product Underscript StartLayout 1st Row k equals 1 2nd Row k not-equals i EndLayout Overscript p plus 1 Endscripts StartFraction xi minus xi Subscript k Baseline Over xi Subscript i Baseline minus xi Subscript k Baseline EndFraction comma i equals 1 comma 2 comma ellipsis comma p plus 1 comma xi element-of upper I Subscript st Baseline dot

      These shape functions have the following important properties:

      (1.51)upper N Subscript i Baseline left-parenthesis xi Subscript j Baseline right-parenthesis equals Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column if i equals j 2nd Row 1st Column 0 2nd Column if i not-equals j EndMatrix and sigma-summation Underscript i equals 1 Overscript p plus 1 Endscripts upper N Subscript i Baseline left-parenthesis xi right-parenthesis equals 1 period

      Exercise 1.5 Sketch the Lagrange shape functions for p equals 3.

      Legendre shape functions

      For p equals 1 we have

      (1.52)upper N 1 equals StartFraction 1 minus xi Over 2 EndFraction comma upper N 2 equals StartFraction 1 plus xi Over 2 EndFraction dot

      For p greater-than-or-equal-to 2 we define the shape functions as follows: