Название: Applied Water Science
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119725268
isbn:
Leung, H.W., Jin, L., Wei, S., Tsui, M.M.P., Zhou, B., Jiao, L., Cheung, P.C., Chun, Y.K., Murphy, M.B., Lam, P.W.S., Pharmaceuticals in tap water: Human health risk assessment of proposed monitoring framework in China. Environ. Health Perspect. 121, 839-846, 2013. doi:10.1289/ehp.1206244
Li. M, Sun. Q, Li. Y, Lv. M, Lin. L, Wu. Y, Ashfaq. M and Yu. C (2016). Simultaneous analysis of 45 pharmaceuticals and personal care products in sludge by matrix solid-phase dispersion and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 408: 4953–4964.
Li, N. K.W.K. Ho, G.G. Ying, W.J. Deng, Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong, Environ. Int. (2017). https://doi.org/10.1016/j.envint.2017.08.014.
Licona, K.P.M. L.R. d. O. Geaquinto, J. V. Nicolini, N.G. Figueiredo, S.C. Chiapetta, A.C. Habert, L. Yokoyama, Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water, J. Water Process Eng. (2018). https://doi.org/10.1016/j.jwpe.2018.08.002.
Liu, S., Zhao, H., Lehmler, H.J., Cai, X. and Chen, J., 2017. Antibiotic pollution in marine food webs in Laizhou Bay, North China: trophodynamics and human exposure implication. Environmental science & technology, 51(4), pp.2392–2400.
Lόpez-Serna. R, Kasprzyk-Hordera. B, Petrovic. M and Barcelό. D (2013). Multiresidue enantiomeric analysis of pharmaceuticals and their active mobilities in the Guadlquivir River basin (South Spain) by chiral liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem., 405: 5859–5873.
Malchi, T. Y. Maor, G. Tadmor, M. Shenker, B. Chefetz, Irrigation of root vegetables with treated wastewater: Evaluating uptake of pharmaceuticals and the associated human health risks, Environ. Sci. Technol. 48 (2014) 9325–9333. https://doi.org/10.1021/es5017894.
Maskaoni. Kand Zhou. J. L (2010). Colloids as a sink for certain pharmaceuticals in the aquatic environment. Environ. Sci. Pollut. Res. 17: 898-907.
Miller, T.H., Bury, N.R., Owen, S.F., MacRae. J.I., Baron, L.P., A review of the pharmaceutical exposome in aquatic fauna. Environ. Pollut. 239, 129–146, 2018. doi:10.1016/j.envpol.2018.04.012
Moldovan. Z, Chira. R and Alder. A. C (2009). Environmental exposure of pharmaceuticals and musk fragrances in the Somes River before and after upgrading the municipal wastewater treatment plant Cluj-Napoca, Romania. Environ. Sci. Pollut. Res. 16 (suppl 1):S46–S54.
Murdoch. K (2015). Pharmaceutical pollution in the environment: Issues for Australia, New Zealand and Pacific Island countries. www.ntn.org.au Accessed 19 December 2019.
Nikolaou. A, Meric. S and Fatta. D (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 387: 1225–1234.
Nimmen, N.F.J., Poels, K..LC., Veulemans, H.A.F., Identification of exposure pathways for opioid narcotic analgesics in pharmaceutical production workers. Ann. Occup. Hyg. 50(7), 665–677, 2006. doi:10.1093/annhyg/mel028
Oliveira F.R., Patel A.K., Jaisi D.P., Adhikari S., Lud H., Khanal S.K. (2017) Environmental application of biochar: Current status and perspectives. Bioresource Technology 246: 110–122.
Oskarsson, H., Wiklund, A-KE., Thorsén, G., Danielsson, G., Kumblad, L., Community interactions modify the effects of pharmaceutical exposure: A microcosm study on responses to propranolol in Baltic Sea coastal organisms. PLoS ONE 9(4), e93774, 2014. doi:10.1371/journal.pone.0093774
Osorio. V, Larraňaga. A, Aceňa. J, Pérez. S and Barcelό (2016). Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of the total environment 540: 267–277.
Paiga. P, Santos. L. H, Ramos. S, Jorge. S, Silva. J. G and Delerue-Matos. C (2016), Presence of pharmaceuticals in the Lis River (Portugal): sources, fate and seasonal variation, science of the total environment 573 pp 164–177.
Paltiel, O., Fedorova, G., Tadmor, G., Kleinstein, G., Maor, Y., Chefetz, B., Human exposure to wastewater-derived pharmaceuticals in fresh produce. A randomised controlled trial focusing on carbamazepine. Environ. Sci. Technol. 50, 4476–4482, 2016. doi:10.1021/acs.est.5b06256
Patel M., Kumar R., Kishor K., Mlsna T., Pittman Jr. C.U., Mohan D. (2019) Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 119(6): 3510–3673.
Petrovska, B.B., Historical review of medicinal plants’ usage. Pharmacognosy Rev. 6(11), 1-5, 2013. doi:10.4103/0973-7847.95849
Pezzola, A., Sweet, C.M., Global pharmaceutical regulation: the challenge of integration for developing states. Globalisation and Health 12, 85, 2016. doi:10.1185/s12992-016-0208-2
Praveena, S.M., Rashid, M.Z.M., Nasir, F.A.M., Yee, W.S. and Aris, A.Z., 2019. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicology and environmental safety, 180, pp.549–556.
Prosser, R.S., Sibley, P.K., Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ. Int. 75, 223–233, 2015. doi:10.1016/j.envint.2014.11.020
Rägo, L., Santoso, B., Drug regulation: History, present and future. In: Drug benefits and risks: International textbook for clinical pharmacology, C.J. van Boxtel., B, Santoso., I.R. Edwards (Eds), 2 edn, pp. 65–76. IOS Press, Uppsala, 2008.
Ragowska, J., Zimmermann, A., Muszyñska, A., Ratajczk, W., Wolska, L., Pharmaceutical household waste practices: Preliminary findings from a case study in Poland. Environ. Manag. 64, 97–106, 2019. doi:10.1007/s00267-019-01174-7
Ratanawijitrasin, S., Wondemagegnehu, E., Effective drug regulation - A multicountry study. WHO, Geneva, 2002.
Riva, F., Castiglioni, S., Fattore, E., Manenti, A., Davoli, E. and Zuccato, E., 2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. International journal of hygiene and environmental health, 221(3), pp.451–457.
Rosales E., Meijide J., Pazos M., Sanromán M.A. (2017) Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 246:176–192.
Sayadi, M.H. R.K. Trivedy, R.K. Pathak, Pollution of pharmaceuticals in environment, J. Ind. Pollut. Control. (2010).
Schulman, L.J., Sargent, E.V., Naumann, B.D., Faria, E..C, Dolan,. DG., John, P,. Wargo, J.P., A human health risk assessment of pharmaceuticals in the aquatic environment. Hum. Ecol. Risk Assess. 8(4), 657–680, 2002. doi:10.1080/20028091057141
Schwab, B.W. E.P. Hayes, J.M. Fiori, F.J. Mastrocco, N.M. Roden, D. Cragin, R.D. Meyerhoff, V.J. D’Aco, P.D. Anderson, Human pharmaceuticals in US surface waters: A human health risk assessment, Regul. Toxicol. Pharmacol. 42 (2005) 296–312. https://doi.org/10.1016/j.yrtph.2005.05.005.
Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Von Gunten, U., Wehrli, B., 2006. The challenge of micropollutants in aquatic systems. Science 313(5790), СКАЧАТЬ