Название: Просчитать будущее. Кто кликнет, купит, соврёт или умрёт
Автор: Эрик Сигель
Жанр: Управление, подбор персонала
isbn: 978-5-9614-3543-6
isbn:
Иногда погоня за данными превращается в настоящую золотую лихорадку. Но данные – это не золото. Повторяю, необработанные данные – это сырье. Золото – то, что можно из них добыть.
Процесс машинного обучения на основе данных раскрывает всю мощь этого все возрастающего ресурса. Он позволяет выявить, что движет людьми и их поступками, что цепляет нас за душу и как устроен мир. Получение таких знаний и делает прогнозирование возможным.
Например, благодаря машинному обучению мы получили такие ценные сведения, как[1]:
• ранний выход на пенсию уменьшает ожидаемую продолжительность жизни;
• люди, которых на сайтах знакомств чаще отмечают как привлекательных, вызывают меньше интереса;
• большинство фанатов Рианны по своим политическим убеждениям – демократы;
• вегетарианцы реже пропускают авиарейсы;
• количество преступлений на местном уровне увеличивается после публичных спортивных мероприятий.
Машинное обучение опирается на подобные знания, чтобы совершенствовать прогнозные возможности систем через процесс обработки больших объемов данных по методу проб и ошибок, уходящий корнями в статистику и компьютерную науку.
Я знал, что вы это сделаете
Располагая такими возможностями, что мы хотели бы спрогнозировать? Фактически все, что делает человек, стоит того, чтобы стать предметом прогнозирования, – а именно то, как мы потребляем, думаем, работаем, уходим, голосуем, любим, воспроизводим потомство, разводимся, создаем проблемы, обманываем, воруем, убиваем или умираем. Давайте рассмотрим некоторые примеры[2].
Потребление
• Голливудские киностудии, принимая решение о производстве фильмов, прогнозируют их успех.
• Американский сервис Netflix заплатил $1 млн группе ученых, которым удалось лучше других усовершенствовать способность его системы рекомендаций прогнозировать, какие фильмы должны понравиться его пользователям.
• Австралийская энергетическая компания Energex прогнозирует спрос на электроэнергию для принятия решений о том, где строить собственные электросети, а компания Con Edison – возможные сбои системы в случае повышения уровня энергопотребления.
• Уолл-стрит прогнозирует цены акций, наблюдая за их движением под влиянием динамики спроса. Такие фирмы, как AlphaGenius и Derwent Capital, управляют торговыми операциями своих хедж-фондов, отслеживая СКАЧАТЬ
1
Более подробно об этих примерах читайте в главе 3.
2
Больше примеров и дополнительных деталей вы найдете в таблицах в приложении D.