AI and IoT-Based Intelligent Automation in Robotics. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу AI and IoT-Based Intelligent Automation in Robotics - Группа авторов страница 5

Название: AI and IoT-Based Intelligent Automation in Robotics

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119711223

isbn:

СКАЧАТЬ the First Scheme.Figure 15.4 Block diagram for V2V communication using Li-Fi in accordance with t...

      15 Chapter 16Figure 16.1 The wheelchair project.Figure 16.2 Alexa Interfaced wheelchair block diagram.Figure 16.3 Health-monitoring system block diagram.Figure 16.4 (a) The health monitoring system circuit; (b) Health parameters obta...Figure 16.5 Driver circuit used in wheelchair implementing two BTS7960 driver ci...Figure 16.6 (a–c) Serial monitor plotter of the ultrasonic radar system prototyp...Figure 16.7 The PRM algorithm.Figure 16.8 (a,b) Results obtained upon implementation of Probabilistic Road Map...Figure 16.9 The RRT algorithm.Figure 16.10 RRT Algorithm illustration.Figure 16.11 (a,b) Results obtained with RRT algorithm.Figure 16.12 Planned trajectory based on waypoints obtained through implementing...Figure 16.13 Differential drive robot following the path.

      16 Chapter 17Figure 17.1 Block diagram depicting the data flow [5].Figure 17.2 Architecture of the proposed system [3].Figure 17.3 Flow chart of the proposed system [6].Figure 17.4 Identifying whether the inputted data is a student or an intruder [8...

      17 Chapter 18Figure 18.1 Process of visitor/intruder monitoring system.Figure 18.2 Block diagram of visitor/intruder monitoring system.Figure 18.3 Raspberry Pi.Figure 18.4 Zebronics Crystal Plus web camera.Figure 18.5 Mail sent to the given email ID.Figure 18.6 Final outcome with image and name (Known person).Figure 18.7 Final outcome with image as mentioned “unknown person” (Unknown intr...Figure 18.8 After adding a frequent visitor to the dataset,the result is “Indu h...

      18 Chapter 19Figure 19.1 Work flow.Figure 19.2 System architecture.Figure 19.3 Sample data frame.Figure 19.4 System architecture.Figure 19.5 Line of best fit.Figure 19.6 Feature importance.Figure 19.7 Pearson’s correlation coefficient.Figure 19.8 Results of Multiple Linear Regression comparing the true values and ...Figure 19.9 Results of Decision Tree Regression comparing the true values and th...Figure 19.10 Results of Random Forest Regression comparing the true values and t...Figure 19.11 Results of Support Vector Regression comparing the true values and ...Figure 19.12 Results of Extreme Gradient Boost comparing the true values and the...Figure 19.13 Scatter plot matrix used to visualize relationships.Figure 19.14 Heat map.Figure 19.15 Performance analysis.

      19 Chapter 20Figure 20.1 (a) Host audio (Blues); (b) watermark image.Figure 20.2 Flow chart of the complete process of watermark embedding.Figure 20.3 Process of watermark extraction.Figure 20.4 Process of audio watermarking in MATLAB.Figure 20.5 (a) Watermark image before embedding; (b) watermark image after the ...Figure 20.6 Sample of watermark image extracted from the attacked—(a) noise, (b)...

      20 Chapter 21Figure 21.1 Transmitter block of DCO-OFDM.Figure 21.2 Receiver block of DCO-OFDM.Figure 21.3 Block diagram of DCO-OFDM.Figure 21.4 Input signal of DCO-OFDM.Figure 21.5 Parallel signal of DCO-OFDM.Figure 21.6 Modulated signal of DCO-OFDM.Figure 21.7 IFFT signal of DCO-OFDM.Figure 21.8 Clipped signal of DCO-OFDM.Figure 21.9 Scaled signal of DCO-OFDM.Figure 21.10 DC-biased signal of DCO-OFDM.Figure 21.11 VCSEL optical spectrum of DCO-OFDM.Figure 21.12 CW Lorentzian laser optical spectrum of DCO-OFDM.Figure 21.13 Fiber optical spectrum of DCO-OFDM.Figure 21.14 Optical combiner spectrum of DCO-OFDM.Figure 21.15 Demodulated signal of DCO-OFDM.Figure 21.16 Parallel signal of DCO-OFDM.Figure 21.17 Received signal of DCO-OFDM.

      21 Chapter 22Figure 22.1 Cost range of syringe pumps provided by various dealers.Figure 22.2 Flowchart showing the steps involved in developing the syringe pump.Figure 22.3 (a) Material used and components made are provided for mechanical as...Figure 22.4 Block diagram of hardware implementation.Figure 22.5 Algorithm for fluid discharge from syringe.Figure 22.6 Top view of prototype.Figure 22.7 (a) Syringe holder and (b) Stepper motor.Figure 22.8 Comparison plot indicating maximum time taken by oil and water to co...Figure 22.9 Comparison plot indicating maximum deviation in time taken by oil an...Figure 22.10 Graph indicating the difference in time taken for complete discharg...Figure 22.11 Volume vs Time plot with respect to inner diameter of syringe.Figure 22.12 Volume (1000 μl) vs Time uncertainty (seconds).Figure 22.13 Volume (3000 μl) vs Time uncertainty (seconds).

      22 Chapter 23Figure 23.1 Outline of proposed emotion extraction from speech.Figure 23.2 MFCC process.Figure 23.3 Mel scale bank of filters.Figure 23.4 Algorithm for an HMM.

      23 Chapter 24Figure 24.1 Overview of the cloud.Figure 24.2 Threats in cloud computing.Figure 24.3 Overview of quantum cryptography.Figure 24.4 Quantum key generation using BB84.Figure 24.5 Generation of secret keys in existing method.Figure 24.6 Overview of authentication process.Figure 24.7 Storing the message after encryption in DynamoDB.Figure 24.8 Sending the secret key after authentication.Figure 24.9 Obtaining data after decryption from DynamoDB.Figure 24.10 Output after the message encryption.Figure 24.11 Overview of creation of the table on DynamoDB.Figure 24.12 Encrypted message stored on DynamoDB.Figure 24.13 Output of the message after decryption.

      Guide

      1  Cover

      2  Table of Contents

      3  Title Page

      4  Copyright

      5  Preface

      6  Begin Reading

      7  Index

      8  End User License Agreement

      Pages

      1  v

      2  ii

      3  iii

      4  iv

      5  xvii

      6  xviii

      7  xix

      8  1

      9  2

      10  3

      11  4

      12  5

      13  6 СКАЧАТЬ