Название: Human Milk: Composition, Clinical Benefits and Future Opportunities
Автор: Группа авторов
Издательство: Ingram
Жанр: Медицина
Серия: Nestlé Nutrition Institute Workshop Series
isbn: 9783318063417
isbn:
Elad et al. [20] have made some expansive claims about their work, but critical analysis of their study suggests some shortcomings. One noteworthy beneficial feature of their study is that their data analysis process allows them to use the hard palate as a register for movements of the tongue (Fig. 2). A relative weakness, in contrast, is that their data are derived from review of a relatively small selection of ultrasound images.
In brief, their methodology is as follows: 5–8 points are digitized on the hard palate (this is a manual process), to which a smooth curve is fitted by interpolation (red line in their Fig. 1A); the same process is applied to the tongue surface (green line). A set of tracings of the hard palate is collected for 4–6 suck cycles, which are then aligned with reference to the Hard-Soft Palate Junction, so that movement of the tongue relative to the hard palate can be visualized (identified as Fig 1A in their figure (Fig. 2A)).
Superimposed on this image (their Fig. 1C (Fig. 2A)) is a set of 28 equally spaced radiating lines (referred to as “polar coordinates,” numbered 1–27 in the figure), which radiate out from the scan head to above the hard and soft palate. The movement of the tongue surface is then plotted along every 5th or 6th polar coordinate, enabling the time lag, relative to the preceding focal coordinate to be visualized.
One apparent limitation of their approach is that 28 polar coordinates do not fully encompass the whole of the oral cavity. This might be regarded as a trivial issue, but the full passage of a suck across the oral cavity determines the overall suck duration, so that more lines would be required, up to at least 36, in order to embrace a full suckling action, including the prepharyngeal phase of swallowing.
Evaluating movement of the tongue surface relative to the hard palate, across four focal polar coordinates – #8, #13, #17, and #22 (illustrated), shows evidence of a phase shift between these separated lines (their Fig. 1E (Fig. 2B)).
In marked contrast, the time shift between ALL of the first 8 polar coordinates is evaluated and no phase shift is seen between individual lines. Based on their Fig. 1D (reproduced in my Fig. 2C), they assert that there is no phase shift between the lines, indicating that the “anterior tongue moves as a rigid body … ruling out the hypothesis of a peristaltic squeezing of the nipple” [20].
Personally, this line of argument appears misleading to me. Certainly, movement along the first three coordinates closest to the mandible (#1–3) is likely to be determined largely by up/down movement of the jaw, but beyond this point, there is evidence of propagation of a peristaltic wave from as early as polar coordinate #4, right through to #28.
Fig. 2. A Figure taken from Elad et al. [20] – a full description is contained in the text. B, C After Elad et al. [10], highlighted enlargement of their their Fig. 1C–E.
Fig. 3. Frame of ultrasound recording showing three user-applied rectangles, in which movements can be automatically tracked and compared.
The study by Monaci and Woolridge [22] merits discussion in this context, as it adopted a similar approach, but used signal processing techniques to analyze ultrasound records in real-time, thereby generating fully objective, automated results. They arbitrarily divided the oral cavity into three, spatially separated, non-overlapping sectors, equating to: (1) the anterior sector of the oral cavity, including nipple and front part of tongue (excluding lower jaw); (2) the middle sector of the oral cavity, comprising the mid-surface of the tongue and the space at the tip of the nipple in which milk accumulates; and (3) the posterior sector, comprising the oropharynx, where swallowing can be detected (Fig. 3).
These authors also examined the time shift between movements in each of these three areas. Ultrasound recordings from 29 mother/baby pairs (46 complete breastfeeds) were analyzed, although analysis was restricted to those periods when active sucking was taking place. Nonetheless, over 1 million frames of active sucking were analyzed in real-time by this technique.
If movement occurred in sector 1 first, a negative phase shift was recorded relative to sector 2; a zero phase shift indicated an absence of a phase shift between sectors 1 and 2; while a positive phase shift indicated movement in sector 2 preceded that in sector 1. In practice, this was caused by the movement in sector 2 being of larger amplitude than that in sector 1 and was commonly evidence for the presence of an ETD being inserted (i.e., an “added” suction element being superimposed on a peristaltic wave).
Figure 4 encompasses approximately 70 sucks, and illustrates the transition from a period of almost pure “peristaltic” sucking (frames 0–1,000), to a “vacuum” phase where ETDs predominate (alongside PTMs) (frames 1,000–1,500).
Fig. 4. Section of analysis over a time frame of 60 s, embracing 70 sucks, which captures the transition from one style of suckling to another.
Table 1. Automated analysis of ultrasound recordings, exploring the phase shift in movement between the anterior and mid-sections of the oral cavity
The “movement detection rectangles” were manually drawn, so needed to be redrawn when there was movement artefact. Despite this limitation, the signal processing approach was applied to all 46 breastfeeding episodes, totaling 16 h of recording. Overall results of the analysis are shown in Table 1.1
СКАЧАТЬ