Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов страница 26

СКАЧАТЬ 86, 125–138.

      98 Wang, W., Wiltberger, M., Burns, A. G., Solomon, S. C., Killeen, T. L., Maruyama, N., & Lyon, J. G. (2004). Initial results from the coupled magnetosphere ionosphere thermosphere model: Thermosphere‐ionosphere responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1425–1441,doi:10.1016/j.jastp.2004.04.008

      99 Weimer, D. R. (1995). Models of high‐latitude electric potentials derived with a least error fit of spherical harmonic coefficients. Journal of Geophysical Research, 100. doi:10.1029/95jA01755

      100 Weimer, D. R. (2001). Maps of field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. Journal of Geophysical Research, 106, 12,889.

      101 Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110. doi:10.1029/2004JA010884

      102 Wiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., & Goodrich, C. C. (2004). Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1411–1423. doi:10.1016/j.jastp.2004.03.026

      103 Wolf, R. A., Harel, M., Spiro, R. W., Voigt, G.‐H., Reiff, P. H., & Chen, C. K. (1982). Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. Journal of Geophysical Research, 87, 5949– 5962.

      104 Wolfe, A., Lanzerotti, L., Maclennan, C., & Weatherwax, A. (1996). Large‐amplitude hydromagnetic waves on open geomagnetic field lines. Antarctic Journal of the United States, 31, 257– 259.

      105 Zmuda, A. J., Armstrong, J. C., & Heuring, F. T. (1970). Characteristics of transverse magnetic disturbances observed at 1,100 kilometers in the auroral oval. Journal of Geophysical Research, Space Physics, 75(25), 4757–4762.

       Stephen E. Milan1,2, and Adrian Grocott3

       1 Department of Physics and Astronomy, University of Leicester, Leicester, UK

       2 Birkeland Centre for Space Science, University of Bergen, Bergen, Norway

       3 Physics Department, Lancaster University, Lancaster, UK

      ABSTRACT

      We review the excitation of high‐latitude ionospheric convection by the interaction of the solar wind with the magnetosphere and the coupling between the magnetosphere and ionosphere. We discuss the role of magnetic reconnection in driving the Dungey cycle of convection, and the influence of frictional coupling between the ionosphere and atmosphere in modifying this convection. The electric current systems that transport stress and momentum throughout the system are described, as well as the magnetic perturbations that they produce on the ground. The system is first described as a steady‐state approximation, and then the time‐dependent expanding/contracting polar cap model of the Dungey cycle is introduced, together with its relation to the substorm cycle.

      At high latitudes, the ionized part of the upper atmosphere undergoes a circulation known as convection, driven by the interaction between the magnetized solar wind and the Earth's magnetosphere. It is the purpose of this review to discuss the nature of this ionospheric convection and its causes. More detail on many aspects of the theory discussed here can be found in other recent reviews, including magnetosphere‐ionosphere coupling (Cowley, 2000), magnetic reconnection and convection (Chisham et al., 2008), magnetospheric current systems (Baumjohann et al., 2010; Ganushkina et al., 2015; Milan et al., 2017), and the history of the development of the ideas behind our current understanding of the system (Cowley, 2015; Milan, 2015), including dawn‐dusk asymmetries (Grocott, 2017). At the end of this review, we will place this chapter in the context of the other chapters in this monograph.

Schematic illustrations of average convection patterns for different IMF orientations from northward at the top and duskward at the right, for solar wind electric field between 3.0 and 20.0 mV m-1. Each panel is presented in a magnetic latitude (50o–90o) and magnetic local time coordinate system, with noon toward the top and dawn to the right. Contours of electrostatic potential are shown in steps of 5 kV.