Название: Будущее быстрее, чем вы думаете. Как технологии меняют бизнес, промышленность и нашу жизнь
Автор: Стивен Котлер
Издательство: Манн, Иванов и Фербер (МИФ)
Жанр: Зарубежная публицистика
Серия: МИФ Бизнес
isbn: 9785001694649
isbn:
Представляем вам понятие распределенной электрической тяги (distributed electric propulsion, DEP[23]).
Вспыхнувший в последнее десятилетие спрос на коммерческие и военные дроны побудил робототехников (а дроны – те же роботы, только летающие) придумать электромагнитный двигатель нового типа: предельно легкий, практически бесшумный и способный перемещать тяжелые грузы. При его проектировании конструкторы опирались на триаду конвергентных технологий: во-первых, прогресс в машинном обучении позволил им проводить сложнейшее имитационное моделирование полетов[24]; во-вторых, прорывные достижения в материаловедении позволили создать компоненты достаточно легкие, но при этом достаточно долговечные, что придает им как применимость в конструировании летательных аппаратов, так и надежность; и, наконец, в-третьих, новые производственные технологии – а именно 3D-печать – позволили производить как двигатели, так и несущие винты любого размера. И, кстати, о производительности: КПД этих электродвигателей – 95 %[25] по сравнению с 28 % у бензинового двигателя. Каково?
Но полеты на DEP, распределенной электрической тяге, – совсем другой коленкор. Регулировать действие дюжины двигателей каждые несколько микросекунд выше человеческих возможностей. DEP-системы снабжены электродистанционным управлением; проще говоря, ими управляет компьютер. А что обеспечивает подобный уровень контроля? Правильно, еще один рой слетевшихся в одну точку конвергентных технологий.
Во-первых, благодаря революции в области искусственного интеллекта мы получили огромные возможности, способные анализировать колоссальные массивы данных, за какие-то микросекунды понимать их смысл и в реальном времени управлять множеством электродвигателей летательного аппарата и, соответственно, устройствами и механизмами самолета. Во-вторых, для усвоения огромного массива данных глаза и уши пилота следует заменить сенсорами, которые способны одновременно и мгновенно обрабатывать гигабайты информации. А для этого необходимы GPS (глобальная система навигации), лидар[26], радар, продвинутые видеокамеры и великое множество акселерометров (датчиков ускорения). Многое из перечисленного – плоды десятилетия смартфонных войн.
Наконец, нужны аккумуляторы. Они должны быть достаточно емкими, чтобы пересилить у людей боязнь дальних поездок – или страх, что во время перелета аппарат разрядится, – и с достаточной мощью, или «плотностью мощности», как говорят инженеры, чтобы оторвать от земли аппарат вместе с пилотом и четырьмя пассажирами. Для такого взлета[27] на каждый килограмм веса требуется как минимум 350 кВт∙ч электроэнергии. Это до недавних пор было недостижимо. СКАЧАТЬ
23
Moore M. Distributed Electric Propulsion Aircraft // Nasa Langley Research Center // aero.larc.nasa.gov/files/2012/11/Distributed-Electric-Propulsion-Aircraft.pdf.
24
Имитировались воздушные потоки в полете.
25
Строго говоря, КПД этих двигателей находится в диапазоне от 90 до 98 %; конкретную разбивку и сопоставления с бензиновым двигателем см.: Nice K., Strickland J. Gasoline and Battery Power Efficiency // How Stuff Works // auto.howstuffworks.com/fuel-efficiency/alternative-fuels/fuel-cell4.htm.
26
LIDAR (Light Detection and Ranging) – обнаружение и определение дальности с помощью света, технология получения и обработки информации об удаленных объектах с помощью оптических систем, которые используют явления поглощения и рассеяния света в оптически прозрачных средах.
27
Интервью Холдена, Nice K., Strickland J. Gasoline and Battery Power Efficiency // How Stuff Works // auto.howstuffworks.com/fuel-efficiency/alternative-fuels/fuel-cell4.htm.