Название: Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119817611
isbn:
Kreinovich, V. and Xiang, G. (2008). Fast algorithms for computing statistics under interval uncertainty: An overview. In Interval/Probabilistic Uncertainty and Non-classical Logics, Huynh, V.N., Nakamori, Y., Ono, H., Lawry, J., Kreinovich, V., Nguyen, H.T. (eds). Springer, Berlin.
Lemaire, M. (2014). Mechanics and Uncertainty. ISTE Ltd, London and John Wiley & Sons, New York.
National Research Council (2009). Evaluation of Quantification of Margins and Uncertainties Methodology for Assessing and Certifying the Reliability of the Nuclear Stockpile. The National Academies Press, Washington, D.C.
Nikolaidis, E., Chen, S., Cudney, H., Hatftka, R.T. and Rosca, R. (2004). Comparison of probability and possibility for design against catastrophic failure under uncertainty. Journal of Mechanical Design, 126(3), 386–394.
Oberguggenberger, M., King, J. and Schmelzer, B. (2009). Classical and imprecise probability methods for sensitivity analysis in engineering: A case study. International Journal of Approximate Reasoning, 50(4), 680–693.
Roy, C.J. and Balch, M.S. (2012). A holistic approach to uncertainty quantification with application to supersonic nozzle thrust. International Journal for Uncertainty Quantification, 2(4), 363–381.
Sentz, K. and Ferson, S. (2002). Combination of evidence in Dempster–Shafer theory. Technical report, SAND2002-0835, Sandia National Lab, Albuquerque.
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton. Silverman, B.W. (2018). Density Estimation for Statistics and Data Analysis. Routledge, New York.
Vose, D. (2008). Risk Analysis: A Quantitative Guide. John Wiley & Sons, New York. Wagner, R.L. (2003). Science, uncertainty and risk: The problem of complex phenomena. APS News, 1(12), 8.
Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London.
Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24, 125–148.
Zhang, H., Mullen, R.L. and Muhanna, R.L. (2011). Structural analysis with probability-boxes. International Journal of Reliability and Safety, 6(1–3), 110–129.
Zimmermann, H.J. (2011). Fuzzy Set Theory and Its Applications. Springer, The Hague.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.