Polymer Nanocomposite Materials. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 23

СКАЧАТЬ style="font-size:15px;">      71 71 Wang, X., Hu, Y., Song, L. et al. (2011). In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21: 4222–4227.

      72 72 Fim, F.d.C., Basso, N.R.S., Graebin, A.P. et al. (2013). Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 128: 2630–2637.

      73 73 Zhu, J., Lim, J., Lee, C.-H. et al. (2014). Multifunctional polyimide/graphene oxide composites via in situ polymerization. J. Appl. Polym. Sci. 131: 40177.

      74 74 Potts, J.R., Lee, S.H., Alam, T.M. et al. (2011). Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49: 2615–2623.

      75 75 Lee, J.K.Y., Chen, N., Peng, S. et al. (2018). Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86: 40–84.

      76 76 Mamunya, E., Davidenko, V., and Lebedev, E. (1995). Percolation conductivity of polymer composites filled with dispersed conductive filler. Polym. Compos. 16: 319–324.

      77 77 Zhou, J., Xu, X., Xin, Y., and Lubineau, G. (2018). Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28: 1705591.

      78 78 Wang, X., Sun, H., Yue, X. et al. (2018). A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 168: 126–132.

      79 79 Li, J., Zhang, D., Yang, T. et al. (2018). Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J. Membr. Sci. 551: 85–92.

      80 80 Yu, S., Wang, X., Xiang, H. et al. (2018). Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140: 1–9.

      81 81 Roh, E., Hwang, B.-U., Kim, D. et al. (2015). Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9: 6252–6261.

      82 82 Zheng, Y., Li, Y., Dai, K. et al. (2018). A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156: 276–286.

      83 83 Xu, H., Qu, M., and Schubert, D.W. (2019). Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181: 107690.

      84 84 Duan, S., Wang, Z., Zhang, L. et al. (2018). A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3: 1800020.

      85 85 Fan, X., Wang, N., Yan, F. et al. (2018). A transfer-printed, stretchable, and reliable strain sensor using PEDOT:PSS/Ag NW hybrid films embedded into elastomers. Adv. Mater. Technol. 3: 1800030.

      86 86 Joo, Y., Byun, J., Seong, N. et al. (2015). Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7: 6208–6215.

      87 87 Huang, W., Dai, K., Zhai, Y. et al. (2017). Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 9: 42266–42277.

      88 88 Liu, H., Dong, M., Huang, W. et al. (2017). Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 5: 73–83.

      89 89 Malliaris, A. and Turner, D.T. (1971). Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J. Appl. Phys. 42: 614–618.

      90 90 Liu, H., Li, Q., Zhang, S. et al. (2018). Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6: 12121–12141.

      91 91 Ma, M., Zhu, Z., Wu, B. et al. (2017). Preparation of highly conductive composites with segregated structure based on polyamide-6 and reduced graphene oxide. Mater. Lett. 190: 71–74.

      92 92 Cui, J. and Zhou, S. (2018). Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy. J. Mater. Chem. C 6: 550–557.

      93 93 Xie, L. and Zhu, Y. (2018). Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 39: 2985–2996.

      94 94 Tang, C., Long, G., Hu, X. et al. (2014). Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale 6: 7877–7888.

      95 95 Wu, C., Huang, X., Wang, G. et al. (2013). Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23: 506–513.

      96 96 Pang, H., Bao, Y., Xu, L. et al. (2013). Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J. Mater. Chem. A 1: 4177–4181.

      97 97 Pang, H., Bao, Y., Yang, S.-G. et al. (2014). Preparation and properties of carbon nanotube/binary-polymer composites with a double-segregated structure. J. Appl. Polym. Sci. 131: 39789.

      98 98 Luo, W., Charara, M., Saha, M.C., and Liu, Y. (2019). Fabrication and characterization of porous CNF/PDMS nanocomposites for sensing applications. Appl. Nanosci. 9: 1309–1317.

      99 99 Cho, E.-C., Chang-Jian, C.-W., Hsiao, Y.-S. et al. (2016). Three-dimensional carbon nanotube based polymer composites for thermal management. Composites Part A 90: 678–686.

      100 100 Zhao, S., Yan, Y., Gao, A. et al. (2018). Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10: 26723–26732.

      101 101 Hu, X., Tian, M., Xu, T. et al. (2020). Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 14: 559–567.

      102 102 Zhang, S., Liu, H., Yang, S. et al. (2019). Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11: 10922–10932.

      103 103 Mates, J.E., Bayer, I.S., Palumbo, J.M. et al. (2015). Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 6: 8874.

      104 104 Gao, J., Wu, L., Guo, Z. et al. (2019). A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit. J. Mater. Chem. C 7: 4199–4209.

      105 105 Ren, M., Zhou, Y., Wang, Y. et al. (2019). Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 360: 762–777.

      106 106 Shi, H., Shi, D., Yin, L. et al. (2014). Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 6: 13748–13753.

СКАЧАТЬ