Конструкции и монтаж фотоэлектрических модулей. Юрий Степанович Почанин
Чтение книги онлайн.

Читать онлайн книгу Конструкции и монтаж фотоэлектрических модулей - Юрий Степанович Почанин страница 9

СКАЧАТЬ style="font-size:15px;">      В настоящее время третье поколение фотоэлементов включает в себя разнообразные технологии, такие как перовскитовые солнечные элементы, которые основаны на соединениях перовскита (комбинация двух катионов и галогенида). Эти солнечные элементы основаны на новейших технологиях. Органо-неорганические материалы, имеющие перовскитную структуру, – это совершенно новая форма фотоэлектрических преобразователей. Перовскит представляет собой минерал преимущественно черного или красновато-коричневого цвета с оригинальной структурой кристаллической решетки. Он богат содержанием примесей титана, ниобия, железа, церия, кальция, тантала. Структура перовскита настолько уникальна, что эти материалы были представлены в различных модификациях – от нанопленок до нанонитей. Классический» перовскит – это CaTiO3, рис.2.7, кристаллы которого имеют псевдокубическую (нарушенную кубическую) структуру.

      

      Рис.2.7. Перовскит CaTiO3

      Однако, тем же именем принято называть и другие материалы с такой же структурой. Сам титанат кальция состоит из атомов трех типов: А (атомы кальция), В (титана) и Х (иногда их называют С, атомы кислорода). Причем А находится в центре псевдокубических структур, В – в угловых узлах псевдокуба, а С образуют вокруг В восьмигранники, на шести вершинах которых находятся как раз по шесть атомов кислорода. В этой стандартной структуре практически любой из атомов обычной схемы ABX3 может быть заменен на относительно сходный по свойствам. И структура в целом при этом сохранится. При этом А—всегда большой катион (положительно заряженный ион), В—всегда катион меньшего размера чем А, а Х—всегда анион (отрицательно заряженный ион). Даже среди природных минералов часто встречаются те, в которых А был не кальцием, а, например, церием, да и В—не титаном, а ниобием или танталом.

      Специфическая пространственная структура кристаллов перовскита дает им массу необычных свойств. Наиболее значимой зоной использования перовскитных материалов сейчас считается солнечная энергетика. Причины просты: КПД таких материалов к 2020 году взлетел до 25,2 %– и это для однослойных фотоэлементов. Лучшие серийные кремниевые солнечные батареи имеют КПД в те же 25%. Тут перовскиты догнали своего основного конкурента. Есть у перовскитов здесь и преимущество, недоступное обычным кремниевым панелям: слегка изменяя состав слоев такого материала, можно сдвинуть ширину его запрещенной зоны—такого значения энергии электрона, которой он в данном материале иметь не может. За счет этого такие слегка отличающиеся друг от друга перовскиты будут чувствительны к несколько разным длинам световых волн. Считается, что перовскитная пленка толщиной всего в 500 нанометров может содержать достаточно слоев, чтобы эффективно генерировать электричество сразу от всех участков видимого диапазона. Поэтому на их основе легко создать двух- и более многослойные материалы с КПД выше, чем у кремния.

      Другая положительная СКАЧАТЬ