Название: Microgrid Technologies
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Зарубежная компьютерная литература
isbn: 9781119710875
isbn:
21. Fathima, A.H., Palanisamy, K., Optimization in microgrids with hybrid energy systems—A review, Renew. Sustain. Energy Rev., 45, 431–446, 2015.
22. Vardakas, J.S., Zorba, N., Verikoukis, C.V., A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms, IEEE Commun. Surv. Tutor., 17, 152–178, 2015.
23. Palizban, O., Kauhaniemi, K., Guerrero, J.M., Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation, Renew. Sustain. Energy Rev., 36, 428–439, 2014.
24. Korolko, N., Sahinoglu, Z., Robust Optimization of EV Charging Schedules in Unregulated Electricity Markets, IEEE Trans. Smart Grid, 8, 149–157, 2017.
25. Katiraei, F., Iravani, R., Hatziargyriou, N., Dimeas, A., Microgrids management, IEEE Power Energy Mag., 6, 54–65, 2008.
26. Theo, W.L., Lim, J.S., Ho, W.S., Hashim, H., Lee, C.T., Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods, Renew. Sustain. Energy Rev., 67, 531–573, 2017.
27. Lidula, N.W.A., Rajapakse, A.D., Microgrids research: A review of experimental microgrids and test systems, Renew. Sustain. Energy Rev., 15, 186–202, 2011.
28. Garcia-Gonzalez, J., Muela, R.M.R., dl Santos, L.M., Gonzalez, A.M., Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market, IEEE Trans. Power Syst., 23, 460–468, 2008.
29. Chen, C., Duan, S., Optimal allocation of distributed generation and energy storage system in microgrids, IET Renew. Power Gener., 8, 581–589, 2014.
30. Ramin, D., Spinelli, S., Brusaferri, A., Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process, Appl. Energy, 225, 622–636, 2018.
31. Behrangrad, M., A review of demand side management business models in the electricity market, Renew. Sustain. Energy Rev., 47, 270–283, 2015.
32. Shayeghi, H., Sobhani, B., Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties, Energy Convers. Manag., 87, 765–777, 2014.
33. Zhao, B., Xue, M., Zhang, X., Wang, C., Zhao, J., An MAS based energy management system for a standalone microgrid at high altitude, Appl. Energy, 143, 251–261, 2015.
34. Alavi, S.A., Ahmadian, A., Aliakbar-Golkar, M., Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method, Energy Convers. Manag., 95, 314–325, 2015.
35. Soroudi, A., Amraee, T., Decision making under uncertainty in energy systems: State of the art, Renew. Sustain. Energy Rev., 28, 376–384, 2013.
36. Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power, Renew. Sustain. Energy Rev., 34, 243–254, 2014.
37. Teo, K.K., Wang, L., Lin, Z., Wavelet Packet Multi-layer Perceptron for Chaotic Time Series Prediction: Effects of Weight Initialization, In Proceedings of the Computational Science—ICCS 2001: International Conference, San Francisco, CA, USA, 1, pp. 310–317, 28–30 May 200.
38. Al-Fattah, S.M., Artificial Neural Network Models for Forecasting Global Oil Market Volatility, SSRN Electron. J., 112, 2013.
39. Amjady, N., Day-ahead price forecasting of electricity markets by a new fuzzy neural network, IEEE Trans. Power Syst., 21, 887–896, 2006.
40. Fu, Q., Nasiri, A., Bhavaraju, V., Solanki, A., Abdallah, T., Yu, D.C., Transition Management of Microgrids With High Penetration of Renewable Energy, IEEE Trans. Smart Grid, 5, 539–549, 2014.
41. Liu, Y., Yu, S., Zhu, Y., Wang, D., Liu, J., Modeling, planning, application and management of energy systems for isolated areas: A review, Renew. Sustain. Energy Rev., 82, 460–470, 2018.
42. Upadhyay, S., & Sharma, M.P., Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India, Energy, 94, 352–366, 2016.
43. Han, Y., Chen, W., & Li, Q., Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid, Energies, 10(1), 136, 2017.
44. Marzband, M., Yousefnejad, E., Sumper, A., & Domínguez-García, J.L., Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization, International Journal of Electrical Power & Energy Systems, 75, 265–274, 2016.
45. Adarsh, B.R., Raghunathan, T., Jayabarathi, T., & Yang, X.S., Economic dispatch using chaotic bat algorithm, Energy, 96, 666–675, 2016.
46. Marzband, M., Alavi, H., Ghazimirsaeid, S.S., Uppal, H., & Fernando, T., Optimal energy management system based on stochastic approach for a home Microgrid with integrated, responsive load demand and energy storage, Sustainable Cities and Society, 28, 256–264, 2017.
47. Maleki, A., Hafeznia, H., Rosen, M.A., & Pourfayaz, F., Optimization of a grid-connected hybrid solar wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches, Applied Thermal Engineering, 123, 1263–1277, 2017.
48. Hussain, A., Lee, J.H., & Kim, H.M., An optimal energy management strategy for thermally networked microgrids in grid-connected mode, Int. J. Smart Home, 10, 239–258, 2016.
49. Ahmad, J., Imran, M., Khalid, A., Iqbal, W., Ashraf, S.R., Adnan, M., Ali, S.F., Khokhar, K.S., Techno-economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar, Energy, 2018.
50. Blum, C., & Roli, A., Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Computing Surveys (CSUR), 35(3), 268–308, 2003.
51. Das, B.K., Al-Abdeli, Y.M., Kothapalli, G., Effect of load following strategies, hardware, and thermal load distribution on standalone hybrid CCHP systems, Appl. Energy, 2018.
52. Luu, N.A., Tran, Q.T., Bacha, S., Optimal energy management for an island microgrid by using dynamic programming method, In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015.
53. Neves, D., Pina, A., Silva, C.A., Comparison of different demand response optimization goals on an isolated microgrid, Sustain. Energy Technol. Assess., 2018.
54. Yu, J., Dou, C., & Li, X., MAS-based energy management strategies for a hybrid energy generation system, IEEE Transactions on Industrial Electronics, 63(6), 3756–3764, 2016.
55. Ju, C., Wang, P., Goel, L., Xu, Y., A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs, IEEE Trans. Smart Grid, 2018.
56. Wang, Z., Zhu, Q., Huang, M., & СКАЧАТЬ