Integration of Cloud Computing with Internet of Things. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Integration of Cloud Computing with Internet of Things - Группа авторов страница 26

Название: Integration of Cloud Computing with Internet of Things

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119769309

isbn:

СКАЧАТЬ method verifies the users sharing the data are genuine or not. The computational time levels are depicted in Figure 3.7.

Graph depicts time levels for Internet of Things group establishment.

      Figure 3.6 Time levels for IoT group establishment.

Graph depicts the computational time levels for data processing.

      Figure 3.7 Computational time levels for data processing.

      The process of identification of malicious activities among the IoT devices is a challenging task. Because of malicious actions, the data in the group will be lost or modified to cause ambiguity in the group. The detection rate of malicious nodes in the proposed model is high when compared to the traditional methods. The malicious node detection rate is depicted in Figure 3.8.

      The Fog computational Secured data storage levels are depicted that indicates that the proposed model takes less time to store the data after computational process. The data storage in cloud should undergo a strong verification process to avoid data loss and also to complete the computational process. The fog computational security levels for data storage is depicted in Figure 3.9

Graph depicts malicious node detection rate.

      Figure 3.8 Malicious node detection rate.

Graph depicts fog computational security levels for data storage.

      Figure 3.9 Fog computational security levels for data storage.

      References

      1. Liu, J., Liu, F., Ansari, N., Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop. IEEE Netw., 28, 4, 32–39, 2014.

      2. Chiang, M. and Zhang, T., Fog and IoT: an overview of research opportunities. IEEE Internet Things J., 3, 60, 854–864, 2016.

      3. Lakshmi Patibandla, R.S.M., Kurra, S.S., Kim, H.-J., Electronic resource management using cloud computing for libraries. Int. J. Appl. Eng. Res., 9, 18141–18147, 2014.

      4. Bagula, A., Mandava, M., Bagula, H., A Framework for Supporting Healthcare in Rural and Isolated Areas. J. Netw. Commun. Appl., 120, 17–29, 2018. https://doi.org/10.1016/j.jnca.2018.06.010

      5. Patibandla, R.S.M.L., Kurra, S.S., Mundukur, N.B., A Study on Scalability of Services and Privacy Issues in Cloud Computing, in: Cloud computing and Internet Technology, ICDCIT 2012. Lecture Notes in Computer Science, vol. 7154, R. Ramanujam and S. Ramaswamy (Eds.), Springer, Berlin, Heidelberg, 2012.

      6. Tarakeswara Rao, B., Patibandla, R.S.M.L., Murty, M.R., A Comparative Study on Effective Approaches for Unsupervised Statistical Machine Translation, in: Embedded Systems and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 1076, V. Bhateja, S. Satapathy, H. Satori (Eds.), Springer, Singapore, 2020.

      7. Hosseinian-Far, A., Ramachandran, M., Slack, C.L., Emerging Trends in Cloud Computing, Big Data, Fog Computing, IoT and Smart Living, in: Technology for Smart Futures, pp. 29–40, Springer International Publishing, Cham, Switzerland, 2018.

      8. Cui, L., Yu, F.R., Yan, Q., When big data meets software-defined networking: SDN for big data and big data for SDN. IEEE Netw., 30, 58–65, 2016.

      10. Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A., Blockchain and IoT Integration: A Systematic Survey. Sensors, 18, 2575, 2018.

      11. Banafa, A., IoT and Blockchain Convergence: Benefits and Challenges, in: IEEE Internet of Things, IEEE, Piscataway, NJ, USA, 2017.

      12. Peter, H. and Moser, A., Blockchain-Applications in Banking & Payment Transactions: Results of a Survey. Eur. Financial Syst., 2017, 141, 2017.

      13. Uddin, M., Mukherjee, S., Chang, H., Lakshman, T.V., SDN-based Multi-Protocol Edge Switching for IoT Service Automation. IEEE J. Sel. Areas Commun., 36, 2775–2786, 2018.

      14. Alliance, N.G.M.N. 5G White Paper; Next Generation Mobile Networks: Frankfurt, Germany, 2017.

      15. Ateya, A.A., Muthanna, A., Koucheryavy, A., 5G framework based on multi-level edge computing with D2D enabled communication, in: Proceedings of the 2018 IEEE 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si Gangwon-do, Korea, 11–14 February 2018, pp. 507–512.

      16. Azimi, I., Anzanpour, A., Rahmani, A.M., Pahikkala, T., Levorato, M., Liljeberg, P., Dutt, N., HiCH: Hierarchical Fog-assisted computing architecture for healthcare IoT. ACM Trans. Embed. Comput. Syst., 16, 174, 2017.

      17. Borcoci, E., Ambarus, T., Vochin, M., Distributed Control Plane Optimization in SDN-Fog VANET. ICN, 2017, 135, 2017.

      18. Sharma, P.K., Chen, M.Y., Park, J.H., A software defined Fog node based distributed blockchain cloud architecture for IoT. IEEE Access, 6, 115–124, 2018.

      19. Khakimov, A., Muthanna, A., Muthanna, M.S.A., Study of Fog computing structure, in: Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29 January–1 February 2018, pp. 51–54.

      20. Rofie, S.A., Ramli, I., Redzwan, K.N., Hassan, S.M., Ibrahim, M.S., OpenFlow Based Load Balancing for Software-Defined Network Applications. Adv. Sci. Lett., 24, 1210–1213, 2018.

      1 *Corresponding СКАЧАТЬ