Название: The Evolutionist at Large
Автор: Allen Grant
Издательство: Bookwire
Жанр: Документальная литература
isbn: 4064066234799
isbn:
Plants which live habitually under water almost always have thin, long, pointed leaves, often thread-like or mere waving filaments. The reason for this is plain enough. Gases are not very abundant in water, as it only holds in solution a limited quantity of oxygen and carbonic acid. Both of these the plant needs, though in varying quantities: the carbon to build up its starch, and the oxygen to use up in its growth. Accordingly, broad and large leaves would starve under water: there is not material enough diffused through it for them to make a living from. But small, long, waving leaves which can move up and down in the stream would manage to catch almost every passing particle of gaseous matter, and to utilise it under the influence of sunlight. Hence all plants which live in fresh water, and especially all plants of higher rank, have necessarily acquired such a type of leaf. It is the only form in which growth can possibly take place under their circumstances. Of course, however, the particular pattern of leaf depends largely upon the ancestral form. Thus this crowfoot, even in its submerged leaves, preserves the general arrangement of ribs and leaflets common to the whole buttercup tribe. For the crowfoot family is a large and eminently adaptable race. Some of them are larkspurs and similar queerly-shaped blossoms; others are columbines which hang their complicated bells on dry and rocky hillsides; but the larger part are buttercups or marsh marigolds which have simple cup-shaped flowers, and mostly frequent low and marshy ground. One of these typical crowfoots under stress of circumstances—inundation, or the like—took once upon a time to living pretty permanently in the water. As its native meadows grew deeper and deeper in flood it managed from year to year to assume a more nautical life. So, while its leaf necessarily remained in general structure a true crowfoot leaf, it was naturally compelled to split itself up into thinner and narrower segments, each of which grew out in the direction where it could find most stray carbon atoms, and most sunlight, without interference from its neighbours. This, I take it, was the origin of the much-divided lower leaves.
But a crowfoot could never live permanently under water. Seaweeds and their like, which propagate by a kind of spores, may remain below the surface for ever; but flowering plants for the most part must come up to the open air to blossom. The sea-weeds are in the same position as fish, originally developed in the water and wholly adapted to it, whereas flowering plants are rather analogous to seals and whales, air-breathing creatures, whose ancestors lived on land, and who can themselves manage an aquatic existence only by frequent visits to the surface. So some flowering water-plants actually detach their male blossoms altogether, and let them float loose on the top of the water; while they send up their female flowers by means of a spiral coil, and draw them down again as soon as the wind or the fertilising insects have carried the pollen to its proper receptacle, so as to ripen their seeds at leisure beneath the pond. Similarly, you may see the arrowhead and the water-lilies sending up their buds to open freely in the air, or loll at ease upon the surface of the stream. Thus the crowfoot, too, cannot blossom to any purpose below the water; and as such among its ancestors as at first tried to do so must of course have failed in producing any seed, they and their kind have died out for ever; while only those lucky individuals whose chance lot it was to grow a little taller and weedier than the rest, and so overtop the stream, have handed down their race to our own time.
But as soon as the crowfoot finds itself above the level of the river, all the causes which made its leaf like those of other aquatic plants have ceased to operate. The new leaves which sprout in the air meet with abundance of carbon and sunlight on every side; and we know that plants grow fast just in proportion to the supply of carbon. They have pushed their way into an unoccupied field, and they may thrive apace without let or hindrance. So, instead of splitting up into little lance-like leaflets, they loll on the surface, and spread out broader and fuller, like the rest of their race. The leaf becomes at once a broad type of crowfoot leaf. Even the ends of the submerged leaves, when any fall of the water in time of drought raises them above the level, have a tendency (as I have often noticed) to grow broader and fatter, with increased facilities for food; but when the whole leaf rises from the first to the top the inherited family instinct finds full play for its genius, and the blades fill out as naturally as well-bred pigs. The two types of leaf remind one much of gills and lungs respectively.
But above water, as below it, the crowfoot remains in principle a crowfoot still. The traditions of its race, acquired in damp marshy meadows, not actually under water, cling to it yet in spite of every change. Born river and pond plants which rise to the surface, like the water-lily or the duck-weed, have broad floating leaves that contrast strongly with the waving filaments of wholly submerged species. They can find plenty of food everywhere, and as the sunlight falls flat upon them, they may as well spread out flat to catch the sunlight. No other elbowing plants overtop them and appropriate the rays, so compelling them to run up a useless waste of stem in order to pocket their fair share of the golden flood. Moreover, they thus save the needless expense of a stout leaf-stalk, as the water supports their lolling leaves and blossoms; while the broad shade which they cast on the bottom below prevents the undue competition of other species. But the crowfoot, being by descent a kind of buttercup, has taken to the water for a few hundred generations only, while the water-lily's ancestors have been to the manner born for millions of years; and therefore it happens that the crowfoot is at heart but a meadow buttercup still. One glance at its simple little flower will show you that in a moment.
V.
SLUGS AND SNAILS.
Hoeing among the flower-beds on my lawn this morning—for I am a bit of a gardener in my way—I have had the ill-luck to maim a poor yellow slug, who had hidden himself among the encroaching grass on the edge of my little parterre of sky-blue lobelias. This unavoidable wounding and hacking of worms and insects, despite all one's care, is no small drawback to the pleasures of gardening in propriâ personâ. Vivisection for genuine scientific purposes in responsible hands, one can understand and tolerate, even though lacking the heart for it oneself; but the useless and causeless vivisection which cannot be prevented in every ordinary piece of farm-work seems a gratuitous blot upon the face of beneficent nature. My only consolation lies in the half-formed belief that feeling among these lower creatures is indefinite, and that pain appears to affect them far less acutely than it affects warm-blooded animals. Their nerves are so rudely distributed in loose knots all over the body, instead of being closely bound together into a single central system as with ourselves, that they can scarcely possess a consciousness of pain at all analogous to our own. A wasp whose head has been severed from its body and stuck upon a pin, will still greedily suck up honey with its throatless mouth; while an Italian mantis, similarly treated, will calmly continue to hunt and dart at midges with its decapitated trunk and limbs, quite forgetful of the fact that it has got no mandibles left to eat them with. These peculiarities lead one to hope that insects may feel pain less than we fear. Yet I dare scarcely utter the hope, lest it should lead any thoughtless hearer to act upon the very questionable belief, as they say even the amiable enthusiasts of Port Royal acted upon the doctrine that animals were mere unconscious automata, by pushing their theory to the too СКАЧАТЬ