Название: The Romance of Industry and Invention
Автор: Various
Издательство: Bookwire
Жанр: Языкознание
isbn: 4064066236694
isbn:
Basic steel is now largely made from inferior pig-iron, such as the Cleveland, by the Thomas-Gilchrist process patented in 1878. It is, however, only a modification of the Bessemer process to the extent of substituting for the siliceous or 'acid' lining generally used, a lime or 'basic' lining for the converter. Limestone, preferably a magnesian limestone in some form, is commonly employed for the lining. By the use of a basic lining, phosphorus is eliminated towards the end of the 'blow.' Phosphorus is a very deleterious substance in steel, and is present, sometimes to the extent of 2 per cent., in pig-iron smelted from impure ore.
The four inventions of this century which have given the greatest impetus to the manufacture of iron and steel were—the introduction of the hot blast into the blast-furnace for the production of crude iron, made by J. B. Neilson, of the Glasgow Gas-works, in 1827; the application of the cold blast in the Bessemer converter which we have just described; the production of steel direct from the ore, by Siemens, in the open hearth; and the discovery of a basic lining by which phosphorus is eliminated and all kinds of iron converted into steel. This last was the discovery of G. J. Snelus, of London, and it was made a practical success by the Thomas & Gilchrist process just described. In 1883, Mr. Snelus was awarded the Bessemer gold medal of the Iron and Steel Institute 'as the first man who made pure steel from impure iron in a Bessemer converter lined with basic materials.'
SIR HENRY BESSEMER.
Sir Henry Bessemer, the inventor of the modern process of making steel from iron, which has just been described, was the son of Anthony Bessemer, who escaped from France in 1792, and found employment in the English Mint. He was born in 1813, at Charlton, Herts, where his father had an estate, was to a great extent self-taught, and his favourite amusement was in modelling buildings and other objects in clay. He came up to London 'knowing no one, and no one knowing me—a mere cipher in this vast sea of enterprise.' He first earned his living by engraving a large number of elegant and original designs on steel with a diamond point, for patent medicine labels. He found work also as designer and modeller. He has been a prolific inventor, as the volumes issued by the Patent Office show. It has been said that he has paid in patent stamp duties alone as much as £10,000. At twenty he invented a mode of taking copies from antique and modern basso-relievos in such a way that they might be stamped on card-board, thousands being produced at a small cost.
His inventive faculty also devised a ready method whereby those who were defrauding the government by detaching old stamps from leases, money-bills, and agreements, and by using them over again, could be defeated in their purpose.
His first pecuniary success was obtained by his invention of machinery for the manufacture of Bessemer gold and bronze powders, which was not patented, but the nature of which was long kept secret. Another successful invention was a machine for making Utrecht velvet. He also interested himself in the manufacture of paints, oils, and varnishes, sugar, railway carriages, ordnance, projectiles, and the ventilation of mines. In the Exhibition of 1851 he exhibited an ingenious machine for grinding and polishing plate-glass.
Like Lord Armstrong, Bessemer turned his attention to the subject of the improvement of projectiles when there was a prospect of a European war in 1853. He invented a mode of firing elongated projectiles from smooth-bore guns, but received no countenance from the officials at Woolwich.
Commander Minié, who had charge of the experiments which Bessemer was making on behalf of the Emperor of the French, said: 'Yes, the shots rotate properly; but if we cannot get something stronger for our guns, these heavy projectiles will be of little use.' This started Bessemer thinking and experimenting further, and led up, as we will see, to the great industrial revolution with which his name stands identified. He informed the Emperor that he intended to study the whole subject of metals suitable for artillery purposes. He built experimental works at St. Pancras, but made many failures, furnace after furnace being pulled down and rebuilt. His prolonged and expensive experiments in getting a suitable ordnance metal were meanwhile using up his capital; but he was on the eve of a great discovery, and began to see that the refinement of iron might go on until pure malleable iron or steel could be obtained. His wife aided and encouraged him at this time as only a true wife can. After a year and a half, in which he patented many improvements in the existing systems of manufacture, it occurred to him to introduce a blast of atmospheric air into the fluid metal, whereby the cast-iron might be made malleable. He found that by blowing air through crude iron in a fluid state, it could thus be rendered malleable. He next tried the method of having the air blown from below by means of an air-engine. Molten iron being poured into the vessel, and air being forced in from below, resulted in a surprising combustion, and the iron in the vessel was transformed into steel. The introduction of oxygen through the fluid iron, induced a higher heat, and burned up the impurities. Feeling that he had succeeded in his experiment, he acquainted Mr. George Rennie with the result. The latter said to him: 'This must not be hid under a bushel. The British Association meets next week at Cheltenham; if you have patented your invention, draw up an account of it in a paper, and have it read in Section G.' Accordingly Bessemer wrote an account of his process, and in August 1856, he read his paper before the British Association 'On the Manufacture of Malleable Iron and Steel without Fuel,' which startled the iron trade of the country.
On the morning of the day on which his paper was to be read, Bessemer was sitting at breakfast in his hotel, when an iron-master to whom he was unknown, laughingly said to a friend: 'Do you know that there is somebody come down from London to read us a paper on making steel from cast-iron without fuel? Did you ever hear of such nonsense?'
Amongst those who spoke generously and enthusiastically of Bessemer's new process was James Nasmyth, to whom the inventor offered one-third share of the value of the patent, which would have been another fortune to him. Nasmyth had made money enough by this time, however, and declined.
In a communication to Nasmyth, Sir Henry Bessemer thanked him for his early patronage, and described his discovery: 'I shall ever feel grateful for the noble way in which you spoke at the meeting at Cheltenham of my invention. If I remember rightly, you held up a piece of malleable iron, saying words to this effect: "Here is a true British nugget! Here is a new process that promises to put an end to all puddling; and I may mention that at this СКАЧАТЬ