Aristotle: The Complete Works. Aristotle
Чтение книги онлайн.

Читать онлайн книгу Aristotle: The Complete Works - Aristotle страница 153

Название: Aristotle: The Complete Works

Автор: Aristotle

Издательство: Bookwire

Жанр: Философия

Серия:

isbn: 9782378078263

isbn:

СКАЧАТЬ and again more flesh be produced from the remainder by repeating the process of separation: then, even though the quantity separated out will continually decrease, still it will not fall below a certain magnitude. If, therefore, the process comes to an end, everything will not be in everything else (for there will be no flesh in the remaining water); if on the other hand it does not, and further extraction is always possible, there will be an infinite multitude of finite equal particles in a finite quantity-which is impossible. Another proof may be added: Since every body must diminish in size when something is taken from it, and flesh is quantitatively definite in respect both of greatness and smallness, it is clear that from the minimum quantity of flesh no body can be separated out; for the flesh left would be less than the minimum of flesh.

      Lastly (4) in each of his infinite bodies there would be already present infinite flesh and blood and brain—having a distinct existence, however, from one another, and no less real than the infinite bodies, and each infinite: which is contrary to reason.

      The statement that complete separation never will take place is correct enough, though Anaxagoras is not fully aware of what it means. For affections are indeed inseparable. If then colours and states had entered into the mixture, and if separation took place, there would be a ‘white’ or a ‘healthy’ which was nothing but white or healthy, i.e. was not the predicate of a subject. So his ‘Mind’ is an absurd person aiming at the impossible, if he is supposed to wish to separate them, and it is impossible to do so, both in respect of quantity and of quality—of quantity, because there is no minimum magnitude, and of quality, because affections are inseparable.

      Nor is Anaxagoras right about the coming to be of homogeneous bodies. It is true there is a sense in which clay is divided into pieces of clay, but there is another in which it is not. Water and air are, and are generated ‘from’ each other, but not in the way in which bricks come ‘from’ a house and again a house ‘from’ bricks; and it is better to assume a smaller and finite number of principles, as Empedocles does.

      <

      div id="section5" class="section" title="5">

      All thinkers then agree in making the contraries principles, both those who describe the All as one and unmoved (for even Parmenides treats hot and cold as principles under the names of fire and earth) and those too who use the rare and the dense. The same is true of Democritus also, with his plenum and void, both of which exist, be says, the one as being, the other as not-being. Again he speaks of differences in position, shape, and order, and these are genera of which the species are contraries, namely, of position, above and below, before and behind; of shape, angular and angle-less, straight and round.

      It is plain then that they all in one way or another identify the contraries with the principles. And with good reason. For first principles must not be derived from one another nor from anything else, while everything has to be derived from them. But these conditions are fulfilled by the primary contraries, which are not derived from anything else because they are primary, nor from each other because they are contraries.

      But we must see how this can be arrived at as a reasoned result, as well as in the way just indicated.

      Our first presupposition must be that in nature nothing acts on, or is acted on by, any other thing at random, nor may anything come from anything else, unless we mean that it does so in virtue of a concomitant attribute. For how could ‘white’ come from ‘musical’, unless ‘musical’ happened to be an attribute of the not-white or of the black? No, ‘white’ comes from ‘not-white’-and not from any ‘not-white’, but from black or some intermediate colour. Similarly, ‘musical’ comes to be from ‘not-musical’, but not from any thing other than musical, but from ‘unmusical’ or any intermediate state there may be.

      Nor again do things pass into the first chance thing; ‘white’ does not pass into ‘musical’ (except, it may be, in virtue of a concomitant attribute), but into ‘not-white’-and not into any chance thing which is not white, but into black or an intermediate colour; ‘musical’ passes into ‘not-musical’-and not into any chance thing other than musical, but into ‘unmusical’ or any intermediate state there may be.

      The same holds of other things also: even things which are not simple but complex follow the same principle, but the opposite state has not received a name, so we fail to notice the fact. What is in tune must come from what is not in tune, and vice versa; the tuned passes into untunedness-and not into any untunedness, but into the corresponding opposite. It does not matter whether we take attunement, order, or composition for our illustration; the principle is obviously the same in all, and in fact applies equally to the production of a house, a statue, or any other complex. A house comes from certain things in a certain state of separation instead of conjunction, a statue (or any other thing that has been shaped) from shapelessness-each of these objects being partly order and partly composition.

      If then this is true, everything that comes to be or passes away from, or passes into, its contrary or an intermediate state. But the intermediates are derived from the contraries-colours, for instance, from black and white. Everything, therefore, that comes to be by a natural process is either a contrary or a product of contraries.

      Up to this point we have practically had most of the other writers on the subject with us, as I have said already: for all of them identify their elements, and what they call their principles, with the contraries, giving no reason indeed for the theory, but contrained as it were by the truth itself. They differ, however, from one another in that some assume contraries which are more primary, others contraries which are less so: some those more knowable in the order of explanation, others those more familiar to sense. For some make hot and cold, or again moist and dry, the conditions of becoming; while others make odd and even, or again Love and Strife; and these differ from each other in the way mentioned.

      Hence their principles are in one sense the same, in another different; different certainly, as indeed most people think, but the same inasmuch as they are analogous; for all are taken from the same table of columns, some of the pairs being wider, others narrower in extent. In this way then their theories are both the same and different, some better, some worse; some, as I have said, take as their contraries what is more knowable in the order of explanation, others what is more familiar to sense. (The universal is more knowable in the order of explanation, the particular in the order of sense: for explanation has to do with the universal, sense with the particular.) ‘The great and the small’, for example, belong to the former class, ‘the dense and the rare’ to the latter.

      It is clear then that our principles must be contraries.

      <

      div id="section6" class="section" title="6">

      The next question is whether the principles are two or three or more in number.

      One they cannot be, for there cannot be one contrary. Nor can they be innumerable, because, if so, Being will not be knowable: and in any one genus there is only one contrariety, and substance is one genus: also a finite number is sufficient, and a finite number, such as the principles of Empedocles, is better than an infinite multitude; for Empedocles professes to obtain from his principles all that Anaxagoras obtains from his innumerable principles. Lastly, some contraries are more primary than others, and some arise from others-for example sweet and bitter, white and black-whereas the principles must always remain principles.

      This will suffice to show that the principles are neither one nor innumerable.

      Granted, then, that they are a limited number, it is plausible to suppose them more СКАЧАТЬ