Sound. John Tyndall
Чтение книги онлайн.

Читать онлайн книгу Sound - John Tyndall страница 10

Название: Sound

Автор: John Tyndall

Издательство: Bookwire

Жанр: Языкознание

Серия:

isbn: 4064066215651

isbn:

СКАЧАТЬ href="#fb3_img_img_7eaeea92-ad3a-5739-a109-8d5a08f529a7.jpg" alt="Fig. 5."/>

      Fig. 5.

      That it is a pulse and not a puff of air is proved by filling one end of the tube with the smoke of brown paper. On clapping the books together no trace of this smoke is ejected from the other end. The pulse has passed through both smoke and air without carrying either of them along with it.

      An effective mode of throwing the propagation of a pulse through air has been devised by my assistant. The two ends of a tin tube fifteen feet long are stopped by sheet India-rubber stretched across them. At one end, e, a hammer with a spring handle rests against the India-rubber; at the other end is an arrangement for the striking of a bell, c. Drawing back the hammer e to a distance measured on the graduated circle and liberating it, the generated pulse is propagated through the tube, strikes the other end, drives away the cork termination a of the lever a b, and causes the hammer b to strike the bell. The rapidity of propagation is well illustrated here. When hydrogen (sent through the India-rubber tube H) is substituted for air the bell does not ring.

Fig. 6.

      Fig. 6.

      The celebrated French philosopher, Biot, observed the transmission of sound through the empty water-pipes of Paris, and found that he could hold a conversation in a low voice through an iron tube 3,120 feet in length. The lowest possible whisper, indeed, could be heard at this distance, while the firing of a pistol into one end of the tube quenched a lighted candle at the other.

       Table of Contents

      The action of sound thus illustrated is exactly the same as that of light and radiant heat. They, like sound, are wave-motions. Like sound they diffuse themselves in space, diminishing in intensity according to the same law. Like sound also, light and radiant heat, when sent through a tube with a reflecting interior surface, may be conveyed to great distances with comparatively little loss. In fact, every experiment on the reflection of light has its analogy in the reflection of sound. On yonder gallery stands an electric lamp, placed close to the clock of this lecture-room. An assistant in the gallery ignites the lamp, and directs its powerful beam upon a mirror placed here behind the lecture-table. By the act of reflection the divergent beam is converted into this splendid luminous cone traced out upon the dust of the room. The point of convergence being marked and the lamp extinguished, I place my ear at that point. Here every sound-wave sent forth by the clock and reflected by the mirror is gathered up, and the ticks are heard as if they came, not from the clock, but from the mirror. Let us stop the clock, and place a watch w, Fig. 7, at the place occupied a moment ago by the electric light. At this great distance the ticking of the watch is distinctly heard. The hearing is much aided by introducing the end f of a glass funnel into the ear, the funnel here acting the part of an ear-trumpet. We know, moreover, that in optics the positions of a body and of its image are reversible. When a candle is placed at this lower focus, you see its image on the gallery above, and I have only to turn the mirror on its stand to make the image of the flame fall upon any one of the row of persons who occupy the front seat in the gallery. Removing the candle, and putting the watch, w, Fig. 8, in its place, the person on whom the light falls distinctly hears the sound. When the ear is assisted by the glass funnel, the reflected ticks of the clock in our first experiment are so powerful as to suggest the idea of something pounding against the tympanum, while the direct ticks are scarcely if at all, heard.

      Fig. 7.

Fig. 8.

      Fig. 8.

      One of these two parabolic mirrors, n n′, Fig. 9, is placed upon the table, the other, m m′, being drawn up to the ceiling of this theatre; they are five-and-twenty feet apart. When the carbon-points of the electric light are placed in the focus a of the lower mirror and ignited, a fine luminous cylinder rises like a pillar to the upper Fig. 9. Fig. 9. mirror, which brings the parallel beam to a focus. At that focus is seen a spot of sunlike brilliancy, due to the reflection of the light from the surface of a watch, w, there suspended. The watch is ticking, but in my present position I do not hear it. At this lower focus, a, however, we have the energy of every sonorous wave converged. Placing the ear at a, the ticking is as audible as if the watch were at hand; the sound, as in the former case, appearing to proceed, not from the watch itself, but from the lower mirror.15

      Curved roofs and ceilings and bellying sails act as mirrors upon sound. In our old laboratory, for example, the singing of a kettle seemed, in certain positions, to come, not from the fire on which it was placed, but from the ceiling. Inconvenient secrets have been thus revealed, an instance of which has been cited by Sir John Herschel.16 In one of the cathedrals in Sicily the confessional was so placed that the whispers of the penitents were reflected by the curved roof, and brought to a focus at a distant part of the edifice. The focus was discovered by accident, and for some time the person who discovered it took pleasure in hearing, and in bringing his friends to hear, utterances intended for the priest alone. One day, it is said, his own wife occupied the penitential stool, and both he and his friends were thus made acquainted with secrets which were the reverse of amusing to one of the party.

      When a sufficient interval exists between a direct and a reflected sound, we hear the latter as an echo.

      Sound, like light, may be reflected several times in succession, and, as the reflected light under these circumstances becomes gradually feebler to the eye, so the successive echoes become gradually feebler to the ear. In mountain regions this repetition and decay of sound produce wonderful and pleasing effects. Visitors to Killarney will remember the fine echo in the Gap of Dunloe. When a trumpet is sounded in the proper place in the Gap, the sonorous waves reach the ear in succession after one, two, three, or more reflections from the adjacent cliffs, and thus die away in the sweetest cadences. There is a deep cul-de-sac, called the Ochsenthal, formed by the great cliffs of the Engelhörner, near Rosenlaui, in Switzerland, where the echoes warble in a wonderful manner.

      

      The sound of the Alpine horn, echoed from the rocks of the Wetterhorn or the Jungfrau, is in the first instance heard roughly. But by successive reflections the notes are rendered more soft and flute-like, the gradual diminution of intensity giving the impression that the source of sound is retreating further and further into the solitudes of ice and snow. The repetition of echoes is also in part due to the fact that the reflecting surfaces are at different distances from the hearer.

      In large, unfurnished rooms the mixture of direct and reflected sound sometimes produces very curious effects. Standing, for example, in the gallery of the Bourse at Paris, you hear the confused vociferation of the excited multitude below. You see all the motions—of their lips as well as of their hands and arms. You know they are speaking—often, indeed, with vehemence—but what they say you know not. The voices mix with their echoes into a chaos of noise, out of which no intelligible utterance can emerge. The echoes of a room are materially damped by its furniture. The presence of an audience may also render intelligible speech possible where, without an audience, the definition of the direct voice is destroyed by its echoes. On the 16th of May, 1865, having to СКАЧАТЬ