Название: Six Lectures on Light
Автор: John Tyndall
Издательство: Bookwire
Жанр: Языкознание
isbn: 4057664586360
isbn:
The impurity of natural colours is strikingly illustrated by an observation recently communicated to me by Mr. Woodbury. On looking through a blue glass at green leaves in sunshine, he saw the superficially reflected light blue. The light, on the contrary, which came from the body of the leaves was crimson. On examination, I found that the glass employed in this observation transmitted both ends of the spectrum, the red as well as the blue, and that it quenched the middle. This furnished an easy explanation of the effect. In the delicate spring foliage the blue of the solar light is for the most part absorbed, and a light, mainly yellowish green, but containing a considerable quantity of red, escapes from the leaf to the eye. On looking at such foliage through the violet glass, the green and the yellow are stopped, and the red alone reaches the eye. Thus regarded, therefore, the leaves appear like faintly blushing roses, and present a very beautiful appearance. With the blue ammonia-sulphate of copper, which transmits no red, this effect is not obtained.
As the year advances the crimson gradually hardens to a coppery red; and in the dark green leaves of old ivy it is almost absent. Permitting a beam of white light to fall upon fresh leaves in a dark room, the sudden change from green to red, and from red back to green, when the violet glass is alternately introduced and withdrawn, is very surprising. Looked at through the same glass, the meadows in May appear of a warm purple. With a solution of permanganate of potash, which, while it quenches the centre of the spectrum, permits its ends to pass more freely than the violet glass, excellent effects are also obtained.[7]
This question of absorption, considered with reference to its molecular mechanism, is one of the most subtle and difficult in physics. We are not yet in a condition to grapple with it, but we shall be by-and-by. Meanwhile we may profitably glance back on the web of relations which these experiments reveal to us. We have, firstly, in solar light an agent of exceeding complexity, composed of innumerable constituents, refrangible in different degrees. We find, secondly, the atoms and molecules of bodies gifted with the power of sifting solar light in the most various ways, and producing by this sifting the colours observed in nature and art. To do this they must possess a molecular structure commensurate in complexity with that of light itself. Thirdly, we have the human eye and brain, so organized as to be able to take in and distinguish the multitude of impressions thus generated. The light, therefore, at starting is complex; to sift and select it as they do, natural bodies must be complex; while to take in the impressions thus generated, the human eye and brain, however we may simplify our conceptions of their action,[8] must be highly complex.
Whence this triple complexity? If what are called material purposes were the only end to be served, a much simpler mechanism would be sufficient. But, instead of simplicity, we have prodigality of relation and adaptation—and this, apparently, for the sole purpose of enabling us to see things robed in the splendours of colour. Would it not seem that Nature harboured the intention of educating us for other enjoyments than those derivable from meat and drink? At all events, whatever Nature meant—and it would be mere presumption to dogmatize as to what she meant—we find ourselves here, as the upshot of her operations, endowed, not only with capacities to enjoy the materially useful, but endowed with others of indefinite scope and application, which deal alone with the beautiful and the true.
LECTURE II.
ORIGIN OF PHYSICAL THEORIESSCOPE OF THE IMAGINATIONNEWTON AND THE EMISSION THEORYVERIFICATION OF PHYSICAL THEORIESTHE LUMINIFEROUS ETHERWAVE THEORY OF LIGHTTHOMAS YOUNGFRESNEL AND ARAGOCONCEPTION OF WAVE-MOTIONINTERFERENCE OF WAVESCONSTITUTION OF SOUND-WAVESANALOGIES OF SOUND AND LIGHTILLUSTRATIONS OF WAVE-MOTIONINTERFERENCE OF SOUND-WAVESOPTICAL ILLUSTRATIONSPITCH AND COLOURLENGTHS OF THE WAVES OF LIGHT AND RATES OF VIBRATION OFTHE ETHER-PARTICLESINTERFERENCE OF LIGHTPHENOMENA WHICH FIRST SUGGESTED THE UNDULATORY THEORYBOYLE AND HOOKETHE COLOURS OF THIN PLATESTHE SOAP-BUBBLENEWTON'S RINGSTHEORY OF 'FITS'ITS EXPLANATION OF THE RINGSOVER-THROW OF THE THEORYDIFFRACTION OF LIGHTCOLOURS PRODUCED BY DIFFRACTIONCOLOURS OF MOTHER-OF-PEARL. |
§ 1. Origin and Scope of Physical Theories.
We might vary and extend our experiments on Light indefinitely, and they certainly would prove us to possess a wonderful mastery over the phenomena. But the vesture of the agent only would thus be revealed, not the agent itself. The human mind, however, is so constituted that it can never rest satisfied with this outward view of natural things. Brightness and freshness take possession of the mind when it is crossed by the light of principles, showing the facts of Nature to be organically connected.
Let us, then, inquire what this thing is that we have been generating, reflecting, refracting and analyzing.
In doing this, we shall learn that the life of the experimental philosopher is twofold. He lives, in his vocation, a life of the senses, using his hands, eyes, and ears in his experiments: but such a question as that now before us carries him beyond the margin of the senses. He cannot consider, much less answer, the question, 'What is light?' without transporting himself to a world which underlies the sensible one, and out of which all optical phenomena spring. To realise this subsensible world the mind must possess a certain pictorial power. It must be able to form definite images of the things which that world contains; and to say that, if such or such a state of things exist in the subsensible world, then the phenomena of the sensible one must, of necessity, grow out of this state of things. Physical theories are thus formed, the truth of which is inferred from their power to explain the known and to predict the unknown.
This conception of physical theory implies, as you perceive, the exercise of the imagination—a word which seems to render many respectable people, both in the ranks of science and out of them, uncomfortable. That men in the ranks of science should feel thus is, I think, a proof that they have suffered themselves to be misled by the popular definition of a great faculty, instead of observing its operation in their own minds. Without imagination we cannot take a step beyond the bourne of the mere animal world, perhaps not even to the edge of this one. But, in speaking thus of imagination, I do not mean a riotous power which deals capriciously with facts, but a well-ordered and disciplined power, whose sole function is to form such conceptions as the intellect imperatively demands. Imagination, thus exercised, never really severs itself from the world of fact. This is the storehouse from which its materials are derived; and the magic of its art consists, not in creating things anew, but in so changing the magnitude, position, grouping, and other relations of sensible things, as to render them fit for the requirements of the intellect in the subsensible world.[9]
Descartes imagined space to be filled with something that transmitted light instantaneously. Firstly, because, in his experience, no measurable interval was known to exist between the appearance of a flash of light, however distant, and its effect upon consciousness; and secondly, because, as far as his experience went, no physical power is conveyed from place to place СКАЧАТЬ