Название: Прикладные аспекты аварийных выбросов в атмосферу. Справочное пособие
Автор: В. И. Романов
Издательство: Романов Вадим Иванович
Жанр: Прочая образовательная литература
isbn: 978-5-89155-166-2
isbn:
Применительно к математическому моделированию процессов возникновения и развития в атмосфере аварийных выбросов загрязняющих и токсичных веществ будем исходить из моделей физических процессов. К ним относятся модели гидротермодинамики атмосферы различных пространственно-временных масштабов, а также модели переноса и трансформации примесей, различные способы параметризации и т.п. В литературных источниках имеется достаточно много подобных разработок [21-23]. Их физический смысл и различия между ними зависят от конкретной постановки задач. В любом случае применительно к решению задачи методами численного моделирования исходят из понятий функций состояния и параметров.
Для удобства и краткости изложения воспользуемся операторной формой [19]. Обозначим векторную функцию состояния через
. К числу ее составляющих относятся поля гидрометеорологических элементов и концентраций загрязняющих примесей.Вектор параметров обозначим
. Параметрами являются коэффициенты уравнений, параметры области интегрирования Dt сеточной области Dht , области размещения наблюдательных систем Dmt , начальные значения функций состояния, распределения и мощности источников тепла, влаги и других примесей и компонентов.В операторном виде математическая модель описываемого процесса имеет следующий вид:
Здесь:
– нелинейный дифференциальный оператор матричной структуры, действующий на множествах функций и ;
Q(Dt) – пространство функций состояния, удовлетворяющих граничным условиям;
R(Dt) – область допустимых значений параметров;
В – диагональная матрица, в которой все или часть элементов могут быть нулями;
– источники;
– , где D – область изменения пространственных переменных;
– интервал изменения времени t.
Входящий в соотношение (1.1) оператор
– определяется уравнениями гидротермодинамики системы атмосфера – почва – вода, переноса и трансформации примесей, а также условиями на границах раздела.Граничные и начальные условия записываются для конкретного физического содержания модели.
В частности, для математической модели переноса примесей в атмосфере, которая входит в состав уравнения (1.1) в качестве составной части, получаем СКАЧАТЬ