(Не)совершенная случайность. Как случай управляет нашей жизнью. Леонард Млодинов
Чтение книги онлайн.

Читать онлайн книгу (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов страница 23

СКАЧАТЬ ответить на тот вопрос, который был напечатан в колонке Мэрилин: вероятность того, что хотя бы один из младенцев окажется девочкой, равна вероятности того, что оба ребенка родятся девочками плюс к этому вероятности того, что лишь один ребенок окажется девочкой. То есть, 25 % плюс 50 %. Выходит 75 %.

      В задаче о двух дочерях обычно фигурирует еще один вопрос: какова вероятность того, что оба ребенка окажутся девочками, при условии, что про одного ребенка уже точно известно – это девочка? Кое-кто станет рассуждать таким образом: поскольку уже дано, что один ребенок – девочка, следует рассматривать лишь другого ребенка. Вероятность того, что этот другой ребенок окажется девочкой, равна 50 %, так что вероятность появления на свет двух девочек равна 50 %.

      Что неверно. Почему? Хотя в формулировке задачи и сказано, что один ребенок – девочка, не уточняется, который из двоих, а это важно. Если вас такое утверждение сбивает с толку, ничего страшного – сейчас я продемонстрирую вам, как метод Кардано чудесным образом все проясняет.

      Новая информация – о том, что один из младенцев – девочка, – означает, что мы исключаем из рассмотрения возможность того, что оба младенца – мальчики. Таким образом, применяя подход Кардано, мы исключаем возможный исход (мальчик, мальчик) из пространства элементарных событий. В нем остаются только 3 исхода: (девочка, мальчик), (мальчик, девочка) и (девочка, девочка). Из этих исходов исход (девочка, девочка) благоприятный, то есть оба младенца рождаются девочками, поэтому вероятность того, что оба ребенка родятся девочками, равна 1 из 3 или 33 %. Теперь-то мы понимаем всю важность момента: в задаче не говорится, который из младенцев девочка. К примеру, если бы в задаче спрашивалось: какова вероятность того, что оба младенца родятся девочками, при условии, что первый ребенок – девочка, мы исключили бы из пространства элементарных событий и пару (мальчик, мальчик), и пару (мальчик, девочка), а вероятность равнялась бы 1 из 2, то есть 50 %.

      Надо отдать должное Мэрилин вос Савант – она не только предприняла попытку привить широкой общественности элементарные знания о теории вероятностей, но и продолжила публиковать подобные вопросы, несмотря на непростой опыт с задачей Монти Холла. Напоследок рассмотрим еще один вопрос из ее колонки, на этот раз датированный мартом 1996 г.:

      «Мой отец услышал это по радио. В Университете Дьюка двое студентов в течение всего семестра получали по химии высшие баллы. Но вечером перед выпускным тестом они были на вечеринке в другом штате, а вернулись только на следующий день, когда экзамен уже закончился. В качестве оправдания они рассказали профессору про лопнувшую шину и попросили разрешения все же написать тест. Профессор согласился, составил для них вопросы и рассадил обоих студентов по разным аудиториям. За правильный ответ на первый вопрос (на одной стороне листа) давалось 5 баллов. Студенты перевернули листы и обнаружили на оборотной стороне вопрос, за правильный ответ на который давалось СКАЧАТЬ