X-Ray Fluorescence Spectroscopy for Laboratory Applications. Jörg Flock
Чтение книги онлайн.

Читать онлайн книгу X-Ray Fluorescence Spectroscopy for Laboratory Applications - Jörg Flock страница 29

Название: X-Ray Fluorescence Spectroscopy for Laboratory Applications

Автор: Jörg Flock

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527816620

isbn:

СКАЧАТЬ for low concentrations of reducing materials (oxidation at temperatures of approximately 300 °C for 1–2 minutes)LiNO3 for slags from steel production (oxidation at temperatures of approximately 815 °C for 5 minutes)NaNO3 for metal sulfides (oxidation at temperatures of 700 °C for 15 minutes). In this case, the nonvolatile Na has to be taken into account in the subsequent analyses orSrNO3, which not only oxidizes the material but also increases the mass absorption of the fusion bead.Further protection of the crucible material is possible by a layering of the oxidizing agent and the sample material, so that the crucible material only comes into contact with the melting agent, as shown in Figure 3.13.

       As melting agent, usually borates are used because they cannot be detected analytically by XRF and they reduce the melting point of the samples. Most commonly, lithium metaborate and lithium tetraborate are used depending on the sample composition. Samples with high contents of Al, Si, S, or Fe react better with metaborate, and samples with high contents of Na, Mg, K, and Ca better with tetraborate. Mixtures of these two melting agents are also frequently used. Further melting agents such as sodium tetraborate are available for special applications, in order to further reduce the melting point. It must be ensured that analyte elements are not also contained in these materials. The usual fluxes as well as their melting temperature can be found in Table 3.9.

Image depicting the arrangement of layers of a melting agent and the sample material in the fusion mold.
Flux Chemical notation Melting temperature (°C)
Lithium metaborate LiBO2 850
Lithium tetraborate Li2B4O7 925
Mixtures LiBO2 + Li2B4O7 825 for a 50 : 50 mix
Sodium tetraborate Na2B4O7 741
Material Ratio of sample to Li2B4O7 Ratio of sample to Li2B4O7 + LiBO2 (mixture of 1 : 1) Ratio of oxidizer (LiNO3) to the sample flux mix
Alumina 0.6 : 6
Bauxite 0.5–1 : 6
Cement 2–3 : 6
Chromium oxide 0.1 : 10
Coal ash 0.6 : 6 1 : 1
Ferric oxide 0.4 : 6
Ferrous oxide 0.4 : 6 1 : 1
Magnesia 0.6 : 6
Rocks 0.5–1 : 6
Silica 1 : 6
Slags 0.5–1 : 6
Sulfate 1 : 6
Sulfide concentrates 0.3–0.6 : 6 2–3 : 1
Sulfide ores 0.4–0.8 : 6 2 : 1
Titania 0.4–0.6 : 6
Zirconia 0.4–0.6 : 6

      Fluxes are hygroscopic, in particular lithium tetraborate. Therefore, the melting agents should be dried before use, and preheating at 105 °C over a longer period (overnight) is recommended.

       Other additives are sometimes also used in the melting process. These may be oxidizing agents and glass-forming agents, but also substances that aim to improve the quality of the fusion bead or have an influence on the analytical process.By strong absorbers, such as BaO or La2O3, the matrix interaction is increased and fusion beads can then be treated as infinitely thick samples, in which the intensity of the fluorescence signal does not depend on the sample thickness, i.e. their information depth is smaller.

       Sometimes, also lithium bromide (LiBr), lithium iodide (LiI), or ammonium iodide (NH4I) is added to the molten sample in small amounts (one or two drops) СКАЧАТЬ