Nanopharmaceutical Advanced Delivery Systems. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Nanopharmaceutical Advanced Delivery Systems - Группа авторов страница 31

Название: Nanopharmaceutical Advanced Delivery Systems

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119711681

isbn:

СКАЧАТЬ Mehnert, W. and Mäder, K., Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 64, 83–101, 2012.

      19. Washington, C., Stability of lipid emulsions for drug delivery. Adv. Drug Deliv. Rev., 20, 131–145, 1996.

      20. McIntosh, T.J., Simon, S.A., Needham, D., Huang, C.H., Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry, 31, 2012–2020, 1992.

      21. Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X., Deng, Y., A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 10, 81–98, 2015.

      23. Bozzuto, G. and Molinari, A., Liposomes as nanomedical devices. Int. J. Nanomedicine, 10, 975–999, 2015.

      24. Lu, Y. m., Huang, J. y., Wang, H., Lou, X. f, Liao, M. h., Hong, L. j., Tao, R. r., Ahmed, M.M., Shan, C. l., Wang, X. l., Fukunaga, K., Du, Y. z., Han, F., Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials, 35, 530–537, 2014.

      25. Martins, S.M., Sarmento, B., Nunes, C., Lúcio, M., Reis, S., Ferreira, D.C., Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur. J. Pharm. Biopharm., 85, 488–502, 2013.

      26. Zhang, N., Ping, Q., Huang, G., Xu, W., Cheng, Y., Han, X., Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 327, 153–159, 2006.

      27. Oh, H.R., Jo, H.Y., Park, J.S., Kim, D.E., Cho, J.Y., Kim, P.H., Kim, K.S., Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin sirna to hepatocellular carcinoma. Nanomaterials, 6, 141, 2016.

      28. Jiang, J., Yang, S.J., Wang, J.C., Yang, L.J., Xu, Z.Z., Yang, T., Liu, X.Y., Zhang, Q., Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur. J. Pharm. Biopharm., 76, 170–178, 2010.

      29. Kawakami, S., Fumoto, S., Nishikawa, M., Yamashita, F., Hashida, M., In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm Res., 17, 3, 306–313, 2000.

      30. Kuo, Y.C. and Chen, H.H., Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int. J. Pharm., 365, 206–213, 2009.

      31. Slepushkin, V.A., Simões, S., Dazin, P., Newman, M.S., Guo, L.S., De Lima, M.C.P., Düzgüneş, N., Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J. Biol. Chem., 272, 2382–2388, 1997.

      32. Paliwal, S.R., Paliwal, R., Vyas, S.P., A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv., 22, 231–242, 2015.

      33. Litzinger, D.C. and Huang, L., Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta, 1113, 201–27, 1992.

      34. Karanth, H. and Murthy, R.S.R., pH-Sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol., 59, 469–483, 2007.

      35. Kashanian, S., Azandaryani, A.H., Derakhshandeh, K., New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int. J. Nanomedicine, 6, 2393–401, 2011.

      36. Momekova, D., Rangelov, S., Yanev, S., Nikolova, E., Konstantinov, S., Romberg, B., Storm, G., Lambov, N., Long-circulating, pH-sensitive liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units. Eur. J. Pharm. Sci., 32, 308–317, 2007.

      37. Momekova, D., Rangelov, S., Lambov, N., Long-Circulating, pH-Sensitive Liposomes. Methods Mol. Biol., 1522, 209–226, Humana Press Inc., 2017.

      38. Roux, E., Stomp, R., Giasson, S., Pézolet, M., Moreau, P., Leroux, J.C., Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J. Pharm. Sci., 91, 1795–1802, 2002.

      39. Yatvin, M.B., Weinstein, J.N., Dennis, W.H., Blumenthal, R., Design of liposomes for enhanced local release of drugs by hyperthermia. Science (80-.), 202, 1290–1293, 1978.

      40. Manzoor, A.A., Lindner, L.H., Landon, C.D., Park, J.Y., Simnick, A.J., Dreher, M.R., Das, S., Hanna, G., Park, W., Chilkoti, A., Koning, G.A., Ten Hagen, T.L.M., Needham, D., Dewhirst, M.W., Overcoming limitations in nanoparticle drug delivery: Triggered, intravascular release to improve drug penetration into tumors. Cancer Res., 72, 5566–5575, 2012.

      42. Landon, C.D., Park, J.Y., Needham, D., Dewhirst, M.W., Nanoscale drug delivery and hyperthermia: The materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J., 3, 38–64, 2011.

      43. Hossann, M., Wiggenhorn, M., Schwerdt, A., Wachholz, K., Teichert, N., Eibl, H., Issels, R.D., Lindner, L.H., In vitro stability and content release properties of phosphatidylglyceroglycerol containing thermosensitive liposomes. Biochim. Biophys. Acta - Biomembr., 1768, 2491–2499, 2007.

      44. Lindner, L.H., Reinl, H.M., Schlemmer, M., Stahl, R., Peller, M., Paramagnetic thermosensitive liposomes for MR-thermometry. Int. J. Hyperther., 21, 575–588, 2005.

      45. McDannold, N., Fossheim, S.L., Rasmussen, H., Martin, H., Vykhodtseva, N., Hynynen, K., Heat-activated Liposomal MR Contrast Agent: Initial in Vivo Results in Rabbit Liver and Kidney. Radiology, 230, 743–752, 2004.

      46. Yokoyama, M., Kwon, G.S., Okano, T., Sakurai, Y., Seto, T., Kataoka, K., Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem., 3, 295–301, 1992.

      47. Kedar, U., Phutane, P., Shidhaye, S., Kadam, V., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine Nanotechnology. Biol. Med., 6, 714–729, 2010.

      48. Cui, X., Mao, S., Liu, M., Yuan, H., Du, Y., Mechanism of Surfactant Micelle Formation. Langmuir, 24, 10771–10775, 2008.

      49. Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 73, 137–172, 2001.

      50. Kabanov, A.V., Chekhonin, V.P., Alakhov, V.Y., Batrakova, E.V., Lebedev, A.S., Melik-Nubarov, N.S., Arzhakov, S.A., Levashov, A.V., Morozov, G.V., Severin, E.S., Kabanov, V.A., The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett., 258, 343–345, 1989.

      51. Singh, A., Thotakura, N., Kumar, R., Singh, B., Sharma, G., Katare, O.P., Raza, K., PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: Cellular uptake, cytotoxic and pharmacokinetic evidences. Int. J. Biol. Macromol., 95, 750–756, 2017.

      52. Kumar, P., Kumar, R., Singh, B., Malik, R., Sharma, G., Chitkara, D., Katare, O.P., Raza, K., Biocompatible Phospholipid-Based Mixed Micelles for Tamoxifen Delivery: Promising Evidences from In-Vitro Anticancer СКАЧАТЬ