Nanopharmaceutical Advanced Delivery Systems. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Nanopharmaceutical Advanced Delivery Systems - Группа авторов страница 19

Название: Nanopharmaceutical Advanced Delivery Systems

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119711681

isbn:

СКАЧАТЬ of lipophilic drugs, and greater bioavailability. The lipid-based carriers owe lower cytotoxicity and are capable to target drugs to the desired site but do not interact with them. Therefore, these carrier systems do not interfere with the existing effect and potency of the drugs. The lipid-based nanocarriers are capable to entrap the drug in higher amount than other types of nanocarriers. There are several methods available to prepare the lipid-based carriers such as high-pressure homogenization, ultrasonication, solvent emulsification–diffusion, microemulsion-based method etc., which produced average and uniform size nanoparticles or nano-droplets. These nanocarriers can be characterized for size, zeta potential, morphological characteristics (SEM, TEM, AFM, and PLM), and thermal and behavioral composition. Lipid-based nanocarriers are being extensively used in drug delivery for various diseases. These carriers were explored enormously for delivering drug, therapeutic nucleic acids, hormones, and proteins utilized drug delivery, gene therapy by delivering nucleic acid, and hormonal therapy by peptides/proteins and hormones delivery. Several commercial products of lipid carriers are available in the market, and numerous products are under clinical trials.

Carrier system Peptide/Hormone References
SLNs Recombinant human insulin [151]
Salmon calcitonin [152]
Gonadorelin [153]
Thymopentin [154]
Leuprolide [155]
Levothyroxine [156]
Lysozyme [157]
SMDDS Cyclosporine [158]
Liposomes Insulin [159]
Salmon calcitonin [160]
Albumin [161]
Leuprolide [162]
Epidermal growth factor [163]
Octreotide [164]
Growth hormone [165]
Nano-emulsion Bovine serum albumin [162, 163]
Aprotinin [164, 165]

      1. Hoffman, A.S., The origins and evolution of “controlled” drug delivery systems. J. Control. Release, 132, 153–163, 2008.

      3. Kommuru, T.R., Gurley, B., Khan, M.A., Reddy, I.K., Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm., 212, 233–246, 2001.

      4. Raza, K., Singh, B., Singal, P., Wadhwa, S., Katare, O.P., Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf. B: Biointerfaces, 105, 67–74, 2013.

      5. Barua, S. and Mitragotri, S., Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today, 9, 223–243, 2014.

      6. Mohsin, K., Shahba, A.A., Alanazi, F.K., Lipid based self emulsifying formulations for poorly water soluble drugs-an excellent opportunity. Indian J. Pharm. Educ. Res., 46, 88–96, 2012.

      7. Gupta, M., Agrawal, U., Vyas, S.P., Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 9, 783–804, 2012.

      8. Raphael, A.P., Garrastazu, G., Sonvico, F., Prow, T.W., Formulation design for topical drug and nanoparticle treatment of skin disease. Ther. Deliv., 6, 197–216, 2015.

      9. Smith, A. and Hunneyballlan, M., Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int. J. Pharm., 30, 215–220, 1986.

      10. Siekmann, B. and Westesen, K., Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett., 1, 123–126, 1992.

      11. Schmidt, P.C., Pharmazeutische Technologie: Moderne Arzneiformen. Lehrbuch für Studierende der Pharmazie, Nachschlagewerk für Apotheker in Offizin, Krankenhaus und Forschung. Von R. H. Müller und G. E. Hildebrand. 348 Seiten, 117 Abbildungen, 57 Tabellen. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1997, pp. 323–323, Pharm UnsererZeit, Germany, 1997.

      12. Mann, E.A., Gurny, R., Doelker, E., Drug loaded nanoparticles-preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm., 39, 173–191, 1993.

      13. Patidar, A., Thakur, D.A., Kumar, V., Verma, J., A review on novel lipid based nanocarriers. Int. J. Pharm. Pharm. Sci., 2, 3035, 2010.

      14. Pinto, J.F. and Muller, R.H., Pellets as carriers of solid lipid nanoparticles (SLN) for oral administration of drugs. Pharmazie, 54, 506–509, 1999.

      15. Sznitowska, M., Gajewska, M., Janicki, S., Radwanska, A., Lukowski, G., Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm., 52, 159–163, 2001.

      16. Muller, R.H., Radtke, M., Wissing, S.A., Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 54, 131–155, 2002.

      17. Olbrich, C., GeBner, A., Kayser, O., Muller, R.H., Lipid drug conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediacetu-rate. J. Drug Targeting, 10, 387–396, 2002.

      18. Mueller., E.A., Kovarik, J.M., vanBree, J.B., Tetzloff, W., Grevel, J., Kutz, K., Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm. Res., 11, 301–304, 1994.

      19. Sawant, R.R. and Torchilin, V.P., Challenges in Development of Targeted Liposomal Therapeutics. AAPS J., 14, 303–315, 2012.