Machine Learning for Time Series Forecasting with Python. Francesca Lazzeri
Чтение книги онлайн.

Читать онлайн книгу Machine Learning for Time Series Forecasting with Python - Francesca Lazzeri страница 4

Название: Machine Learning for Time Series Forecasting with Python

Автор: Francesca Lazzeri

Издательство: John Wiley & Sons Limited

Жанр: Базы данных

Серия:

isbn: 9781119682387

isbn:

СКАЧАТЬ 150

      153 151

      154  152

      155  153

      156  154

      157  155

      158  156

      159  157

      160  158

      161  159

      162  160

      163  161

      164  162

      165  163

      166  164

      167  165

      168  167

      169 168

      170  169

      171  170

      172  171

      173  172

      174  173

      175  174

      176  175

      177  176

      178 177

      179 178

      180  179

      181  180

      182  181

      183  182

      184  183

      185  184

      186  185

      187  186

      188  187

      189  188

      190  189

      191 190

      192  191

      193  192

      194  193

      195  194

      196  195

      197  196

      198  197

      199 198

      200  199

      201 200

      202 201

      203 202

      204 203

      205 204

      206 205

      207 206

      208  ii

      209  iii

      210  v

      211  vii

      212  207

       Francesca Lazzeri, PhD

      Time series data is an important source of information used for future decision making, strategy, and planning operations in different industries: from marketing and finance to education, healthcare, and robotics. In the past few decades, machine learning model-based forecasting has also become a very popular tool in the private and public sectors.

      Currently, most of the resources and tutorials for machine learning model-based time series forecasting generally fall into two categories: code demonstration repo for certain specific forecasting scenarios, without conceptual details, and academic-style explanations of the theory behind forecasting and mathematical formula. Both of these approaches are very helpful for learning purposes, and I highly recommend using those resources if you are interested in understanding the math behind theoretical hypotheses.

      This book fills that gap: in order to solve real business problems, it is essential to have a systematic and well-structured forecasting framework that data scientists can use as a guideline and apply to real-world data science scenarios. The purpose of this hands-on book is to walk you through the core steps of a practical model development framework for building, training, evaluating, and deploying your time series forecasting models.

      The first part of the book (Chapters 1 and 2) is dedicated to the conceptual introduction of time series, where you can learn the essential aspects of time series representations, modeling, and forecasting.

      Along the way, I show at practice how these models can be applied to real-world data science scenarios by providing examples and using a variety of open-source Python packages and Azure. With these guidelines in mind, you should be ready to deal СКАЧАТЬ