Название: Multi-parametric Optimization and Control
Автор: Efstratios N. Pistikopoulos
Издательство: John Wiley & Sons Limited
Жанр: Математика
isbn: 9781119265191
isbn:
(1.37d)
where
(1.38)
1.4 Organization of the Book
The remainder of this book is organized in two parts. In the first part, the theoretical and algorithmic essentials of multi‐parametric programming problems will be established. These include algorithms for the solution of multi‐parametric linear programming (mp‐LP), multi‐parametric quadratic programming (mp‐QP), multi‐parametric mixed‐integer linear programming (mp‐MILP), and multi‐parametric mixed‐integer quadratic programming (mp‐MIQP) problems. On the other hand, the latter of these parts is focused on the applications of multi‐parametric programming and specifically on its utilization to provide solutions to receding horizon optimization problems such as model predictive control.
References
1 1 Fiacco, A.V. (1983) Introduction to sensitivity and stability analysis in nonlinear programming, Mathematics in science and engineering, vol. v, 165, Academic Press, New York.
2 2 Boyd, S.P. and Vandenberghe, L. (2004) Convex optimization, Cambridge University Press, Cambridge, UK and New York.
3 3 Telgen, J. (1981) Redundancy and linear programs, Mathematisch Centrum, Amsterdam.
4 4 Karwan, M.H., Lotfi, V., Telgen, J., and Zionts, S. (1983) Redundancy in mathematical programming: a state‐of‐the‐art survey, Lecture notes in economics and mathematical systems, vol. 206, Springer‐Verlag, Berlin and New York.
5 5 Brearley, A.L., Mitra, G., and Williams, H.P. (1975) Analysis of mathematical programming problems prior to applying the simplex algorithm. Mathematical Programming, 8 (1), 54–83, doi: 10.1007/BF01580428.
6 6 Suard, R., Lofberg, J., Grieder, P., Kvasnica, M., and Morari, M. (2004) Efficient computation of controller partitions in multi‐parametric programming, in 2004 43rd IEEE Conference on Decision and Control (CDC), vol. 4, pp. 3643–3648, doi: 10.1109/CDC.2004.1429297.
7 7 Jones, C.N., Kerrigan, E.C., and Maciejowski, J.M. (2004) Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation. Technical Report CUED/F‐INFENG/TR.463. Cambridge University, Cambridge, UK.
8 8 Kouramas, K.I., Panos, C., Faísca, N.P., and Pistikopoulos, E.N. (2013) An algorithm for robust explicit/multi‐parametric model predictive control. Automatica, 49 (2), 381–389, doi: 10.1016/j.automatica.2012.11.035. URL http://www.sciencedirect.com/science/article/pii/S0005109812005717.
9 9 Schrijver, A. (1998) Theory of linear and integer programming, Wiley‐interscience series in discrete mathematics and optimization, Wiley, Chichester and New York.
10 10 Bemporad, A. and Morari, M. (1999) Control of systems integrating logic, dynamics, and constraints. Automatica, 35 (3), 407–427, doi: 10.1016/S0005‐1098(98)00178‐2. URL http://www.sciencedirect.com/science/article/pii/S0005109898001782.
11 11 Williams, H.P. (2013) Model building in mathematical programming, Wiley, Hoboken, NJ, 5th edn.
Notes
1 1 A function is called pseudo‐convex if for all feasible where we have .
2 2 A function is called quasi‐convex if for all feasible and we have . Note that a quasi‐concave function is a function whose negative is quasi‐convex.
2 Multi‐parametric Linear Programming
Consider the following linear programming (LP) problem:
where
where