Dynamic Spectrum Access Decisions. George F. Elmasry
Чтение книги онлайн.

Читать онлайн книгу Dynamic Spectrum Access Decisions - George F. Elmasry страница 26

Название: Dynamic Spectrum Access Decisions

Автор: George F. Elmasry

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119573791

isbn:

СКАЧАТЬ and centralized decision‐making processes. In a typical system, referred to as the standard centralized fusion model, each node transmits its local decision outcome to a centralized DFC or a peer node. Spectrum sensing traffic, which include this reporting of node decision, can use a standalone channel known as parallel access channel (PAC) or can use one of the orthogonal signal multiple access channels (MACs). Reporting to peer nodes can use a separate channel from reporting to a centralized DFC, which is often referred to as the cooperative channel. Figure 2.13 shows three types of channels: (i) the sensed communications channel indicated by the thick lines; (ii) the reporting channel to the centralized DFC indicated by the thin lines; and (iii) the cooperative channel for peer‐to‐peer reporting of spectrum sensing decisions indicated by the dashed lines.

Schematic illustration of the cooperative spectrum sensing with MIMO DFC.

      With this cooperative mode, the ROC decision‐making process explained in the next chapter is altered to a complementary receiving operating characteristics (CROC) decision‐making process, which takes into consideration the difference in spectral efficiency.

      2.4.6 Waveform Based Spectrum Sensing

      This spectrum sensing approach relies on pre‐knowledge of the signal to be sensed. Some commercial wireless signals use known synchronization patterns to align the receiving node processing to the received signal. These patterns can be exploited by the spectrum sensor to hypothesize the presence of the sensed signal. Signal synchronization patterns can include preambles, mid‐ambles, regularly transmitted pilot patterns, spreading sequences,15 etc.16 These patterns allow the spectrum sensor to correlate the received signal with a known copy of itself (it is essentially a form of coherent detection). This correlation process leads to a spectrum sensing result that outperforms energy detector based sensing. The reliability of the correlation process increases when the known signal length increases. Waveform‐based detection is used with known signals such as IEEE 802.11 signals.

      While the autocorrelation based signal detection explained in Section 2.4.2 can be influenced by noise and the time lag between the samples, waveform based spectrum sensing is only affected by the presence of noise as the signal patterns align with the correlation process. Chapter 3 shows how the decision‐making process of waveform based spectrum sensing may differ from that of simple energy detection spectrum sensing.

      2.4.7 Cyclostationarity Based Spectrum Sensing

      Chapter 3 shows a type of cyclic autocorrelation function used with same‐channel in‐band signal sensing which estimates the noise spectral density separate from estimating the in‐band signal spectral density.

      As explained in Chapter 1, DSA involves many factors other than spectrum sensing. When propagating spectrum sensing information to peer nodes or to a centralized location, the geolocations of the sensors must be attached to the spectrum sensing information. This allows a distributed or a centralized DSA process that fuses spectrum sensing information from different sensors to create a comprehensive view of spectrum use (spectrum map) in a given area of operation.17 This comprehensive view can find each sensed signal's area of coverage (AOC) to create spectrum opportunities based on locations as well as find directional beams that can show more spatial opportunistic use.

      2.5.1 Geographical Space Detection

Schematic illustration of the geographical separation creating opportunistic spectrum use for a secondary user. Schematic illustration of the geographical separation creating the DSA of a limited set of frequency bands for a set of heterogeneous MANETs.