Internal Combustion Engines. Allan T. Kirkpatrick
Чтение книги онлайн.

Читать онлайн книгу Internal Combustion Engines - Allan T. Kirkpatrick страница 26

Название: Internal Combustion Engines

Автор: Allan T. Kirkpatrick

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119454557

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="#ulink_e6a7813d-72a2-52fa-a14b-f39973f9af72">Figure 1.20 Cutaway view of 3.2 L V‐6 automobile engine. (Courtesy of Honda Motor Co.)

Schematic illustration of a variable valve timing mechanism.

      Heavy‐Duty Truck Diesel Engine

      The top of the piston has a torus‐shaped crater bowl, so that the initial combustion will take place in the piston bowl. The injection nozzles have three to six holes through which the fuel sprays into the piston bowl. The pressure required to spray the diesel fuel into the combustion chamber is of the order of 1000 bar, for adequate spray penetration into the bowl and subsequent atomization of the diesel fuel. The fuel injection pressure is generated by a plunger driven by the camshaft rocker arm.

Schematic illustration of the 5.9 L L6 on-highway diesel engine.

      Stationary Gas Engine

      Since natural gas engines are operated lean to reduce nitrogen oxides (images), prechambers are used to initiate a stable combustion process. Pressurized natural gas is injected into a prechamber above the piston, and a spark plug in the prechamber is used to ignite the natural gas. The increase in pressure projects the burning mixture into the main combustion chamber, where the final stages of the combustion take place. Prechambers are also used in high‐speed diesel engines to achieve acceptable mixing and more complete combustion.

Photo depicts the 94 L L8 stationary natural gas engine. Schematic illustration of the cutaway view of 94 L L8 stationary natural gas engine.

      In this section, alternative powertrain technology, including electric motors, fuel cells, and gas turbines, are discussed in terms of a particular application where they have some advantage over the internal combustion engine.

      Electric Motors

      Electric vehicles have a number of advantages over internal combustion vehicles. Electric vehicles are quiet, have lower vibration levels, and cost less to operate, about 1 cent per mile versus 10 cents per mile for internal combustion vehicles. Electric motors have been developed that have high torque‐speed characteristics superior to those of internal combustion engines, and also provide up to 150 kW per wheel. Most of the electric motors currently used in hybrid and electric vehicles are brushless DC motors, with rotor‐mounted permanent magnets. However, use of AC induction motors, in which the rotating magnetic field is produced by electric currents in the stator, is increasing due to their lower cost, and less complex incorporation into the engine powertrain. Electric motor performance maps that contain contours of motor efficiency on a torque‐speed plane are used to choose electric motors for vehicular applications.

      Proponents of electric vehicles point out that almost any fuel, solar photovoltaic panels, or wind turbines can be used to generate the electricity used by an electric vehicle, reducing dependence on fossil fuels. There would be no local fossil fuel exhaust emissions emitted by the electric vehicle in an urban environment. However, if the electricity is generated by a power plant using coal as a fuel, the air pollution generated by the coal power plant would negate the air‐quality advantage of the electric vehicle.

      The main problem with electric vehicles is the batteries used for energy storage. It is generally recognized that a breakthrough in battery technology is required if electric vehicles are to become a significant part of the automotive fleet. Battery packs for vehicles are generally assembled from groups of individual lithium ion batteries, with a total mass of about 3500 kg, and have a life span of about 5 years. The battery pack capacity for automobiles varies from about 25–100 kWh, and fully electric urban buses are equipped with batteries with capacities from 600 to 1000 kWh. The electric vehicles that have been built to date have a limited range of only 100–200 mi (160–320 km), on the order of one‐half of what can be easily realized with a gasoline engine–powered vehicle.

СКАЧАТЬ