Data Theory. Simon Lindgren
Чтение книги онлайн.

Читать онлайн книгу Data Theory - Simon Lindgren страница 11

Название: Data Theory

Автор: Simon Lindgren

Издательство: John Wiley & Sons Limited

Жанр: Кинематограф, театр

Серия:

isbn: 9781509539291

isbn:

СКАЧАТЬ or maybe just plain stupid. But as a matter of fact, this approach is not very far from how science, as conceived by Bruno Latour, in general comes into being. Science and research happen in action. They are not ready made. Interest should not be focused on any alleged intrinsic qualities of approaches, but on the transformations that they undergo in their practical use. Methods do not have any ‘special qualities’, as their effects come from the many ways through which they are ‘gathered, combined, tied together, and sent back’ (Latour, 1987, p. 258). Thus, ‘we are never confronted with science, technology and society, but with a gamut of weaker and stronger associations’ (Latour, 1987, p. 259). Knowledge about society is produced through more or less messy sets of practical contingencies.

      it is not so much a problem that determines the use of a particular technique but a prior intellectual commitment to a philosophical position. The problem is then presumably formulated within the context of these commitments. This suggestion also makes some sense in terms of the individual biographies of many social researchers, most of whom do seem to be wedded to a particular research technique or tradition. Few researchers traverse the epistemological hiatus which opens up between the research traditions.

      (Bryman, 1984, p. 80)

      Today, however, there is an increasingly widespread consensus that the employment of combinations of ‘qualitative’ and ‘quantitative’ methods is a valid and recommended strategy, which allows researchers to benefit from their various strengths, and balance their respective weaknesses. The ‘qualitative’ tradition is seen as the more inductively oriented interpretative study of a small number of observations, while the ‘quantitative’ tradition is characterised by the deductively oriented statistical study of large numbers of cases. This has given rise to the common notion that ‘qualitative’ research produces detailed accounts through close readings of social processes, while ‘quantitative’ research renders more limited, but controlled and generalisable, information about causal relations and regularities of the social and cultural fabric.

      As argued above, most researchers would agree in theory that methodological pragmatism – letting the problem to be researched, and what type of knowledge is sought, decide which method should be used – but few actually do this. This is not because researchers are liars, but because it is in fact hard to make it happen. The general direction for the work in this book, in combining the data-drivenness of interpretive (‘qualitative’) sociology, with the data-drivenness of (‘quantitative’) computational methods, most closely resembles what methodologists Norman Denzin and Yvonna Lincoln (2005, pp. 4–6) have discussed in terms of bricolage.

      For the purpose of this book’s ambition to establish an interface between interpretive sociology and computational methods, the idea of bricolage refers to the method of piecing these two together in the shape of an emergent construction ‘that changes and takes new forms as the bricoleur adds different tools, methods, and techniques of representation and interpretation to the puzzle’ (Denzin and Lincoln, 2005, p. 4). Method must not be dogmatic, but strategic and pragmatic. I therefore argue in this book, that computational techniques, results, and visualisations can be used as elements in a new form of interpretive enterprise.

      Analysing sociality in the age of deep mediatisation may appear to be something that should be done in more ‘quantitative’ terms, because of its scale and the numerical character of much social media data. But there is actually even more reason to approach such objects of study, as well as the new types of data they enable and exude, from a more interpretive standpoint. Just because sociality in the digital age happens in volume and numbers, does not mean that its traces are automatically akin to survey data or other forms of statistical inputs. It is important to realise that the internet, and its networked social tools and platforms, in many ways serve up a different research context than what has been the familiar one to social science. The new context possesses an ‘essential changeability’ that begs a conscious shift of focus and method (Jones, 1999, p. xi). It is because of this that researching digital society demands that the researcher be even more critical and reflective than is already demanded by scholarship in general.