Profit Maximization Techniques for Operating Chemical Plants. Sandip K. Lahiri
Чтение книги онлайн.

Читать онлайн книгу Profit Maximization Techniques for Operating Chemical Plants - Sandip K. Lahiri страница 11

СКАЧАТЬ this large amount of data. This chapter explains the emergence of knowledge‐based industries and only CPIs employing knowledge to drive the business are likely to survive in the future. This essentially means generating an effective platform that can generate knowledge from available business data and use this knowledge to develop a unified framework to support faster business decisions to respond to external market uncertainties. This chapter gives an overview of how to build a framework where advanced computational knowledge and experience‐based heuristics are applied to utilize this wealth of data to maximize profit. In simple terms, profit maximization means maximization of dollar ($)/h generation from the plant while subject to constraints that all process and safety constraints need to be honored and all equipment limitations should not be violated. The need for profit maximization in today's competitive market is explained in this chapter.

      Big Picture of the Modern Chemical Industry

      Profit Maximization Project (PMP) Implementation Steps

      Chapter 3 describes different steps for implementing a profit maximization project. It introduces 14 major broad ideas or steps for profit maximization in running commercial plants. These ideas are described in detail in subsequent chapters throughout the book. These generic steps are holistic and can be applied in any process industry, starting from refinery, petrochemical, chemical plants, metals, pharmaceuticals, paper and pulp industries, etc. It starts with mapping the whole plant in monetary terms (US$/h) instead of flow terms. This gives an idea of where to focus maximization of the profit and what low hanging fruits are needed that can be easily translated to increase profit without much investment. Practical guidelines to build a profit maximization framework, easily implementable solutions, numerous examples, and case studies from industries give a completely new computational approach to solve process industry problems and are the hallmark of this book.

      Strategy of Profit Maximization

      A strategy of profit maximization is the essence of Chapter 4. This chapter describes different ways to maximize the operating profit. The concept of process cost intensity and how to calculate it are introduced in this chapter. The procedure for mapping the whole process in monetary terms and gain insights is described by way of an ethylene glycol plant case study.

      This chapter describes in detail eight key steps in mapping current process conditions against different process constraints and limits. The first three major steps are (i) define plant business and economic objectives, (ii) identify various process and safety limitations, and (iii) critically identify the profit scope. Key parameter identification steps for economics, operations, and constraints of the plant are discussed in detail. How to evaluate and exploit potential optimization opportunity is discussed with industrial case studies.

      Key Performance Indicators and Targets

      Assessment of Current Plant Status

      An assessment of current plant status and know where you are is the first major step in building a profit maximization project. This chapter deals with the holistic approach to assess the current plant status. How to assess the performance of the base regulatory control layer and the advance process control layer of running a plant is discussed in detail in this chapter. A performance assessment of the major process equipment and an evaluation of the economic performance of the plant against a benchmark are two key focus areas discussed in this chapter. An assessment of profit suckers and identification of equipment for modeling and optimization and an assessment of process parameters having a high impact on profit are two takeaways in this chapter. Readers are enlightened with an assessment of various profit improvement opportunities.

      Process Modeling by an Artificial Neural Network

      Chapter 7 emphases the need for data‐driven black box and grey box modeling techniques where building of a first principle‐based model is infeasible or time consuming due to the complexity of the industrial equipment. How an artificial neural network (ANN) can be utilized as an effective tool of black box modeling in an industrial context is discussed in this chapter with various real‐life applications. A step‐by‐step procedure to build an ANN‐based modeling platform to utilize a large amount of process data is explained in detail with example calculations. The new horizon of modeling process performance parameters like selectivity, yield, and efficiency and how these models can be utilized to increase profit is explained here. Different examples and case studies of ANN models already applied in diverse fields of process industries are illustrated to give the reader a feel for large scope and potential of applications of the ANN in industry.

      Optimization of Industrial Processes and Process Equipment