Introduction to Mechanical Vibrations. Ronald J. Anderson
Чтение книги онлайн.

Читать онлайн книгу Introduction to Mechanical Vibrations - Ronald J. Anderson страница 15

Название: Introduction to Mechanical Vibrations

Автор: Ronald J. Anderson

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119053644

isbn:

СКАЧАТЬ This is satisfied ifThis is an equilibrium value of where the gravitational pull and the centripetal effects exactly balance each other. It corresponds to an angle between and because the positive values of , , and force the cosine to be positive. We will be interested in the behavior of the bead for small motions about this equilibrium state.6

      There two types of nonlinearities that we will often be required to deal with. They are (1) geometric nonlinearities and (2) structural nonlinearities. Geometric nonlinearities arise from trigonometric functions of large angles and structural nonlinearities are due to the inherent nonlinear stiffness (i.e. force versus deflection characteristic) of materials for large deflections.

      1.3.1 Geometric Nonlinearities

      Both the simple pendulum with the EOM (Equation of Motion)

      (1.49)equation

      and the bead on a rotating wire with the EOM

      (1.50)equation

      1.3.1.1 Linear EOM for a Simple Pendulum

      The nonlinear differential equation of motion for the pendulum (Equation 1.44) is valid for any range of motion. The difficulty is that we can't solve nonlinear differential equations without resorting to numerical methods. We get around this problem by linearizing the differential equation because we have had courses on how to solve linear differential equations.

      To do this, we consider small motions near the stable equilibrium state. Let images in Equation 1.44 be replaced by images where images is a very small angle and images is the equilibrium value of images. That is,

equation

      and, differentiating with the knowledge that images is constant, we find

equation

      and then

equation

      Substituting into Equation 1.44 yields

equation

      and

equation equation

      and

equation

      Equation 1.52 can then be written as

      (1.53)equation

      and the equation of motion (Equation 1.51) becomes

      Note the constant term images that appears in Equation 1.54. This is the term that was set to zero to determine the equilibrium state (see Equation 1.45) and it is still equal to zero so it can be removed. The equilibrium condition is always a set of constant terms that must be zero for the system not to move and that set of constant terms always reappears in the linearized equation of motion. After removing the equilibrium condition, the linearized equation of motion for the pendulum becomes

      (1.55)equation

      This equation is valid for motion about either of the two equilibrium states we found (i.e. images with images and images with images). We write