Название: End-to-end Data Analytics for Product Development
Автор: Chris Jones
Издательство: John Wiley & Sons Limited
Жанр: Математика
isbn: 9781119483700
isbn:
Mattia De Dominicis is a former R&D Vice‐President in Reckitt Benckiser with a successful track record in R&D, having led innovation, product development, launch and roll out of consumer good products in Household and Personal Care. He has lived and worked in Italy, the US, UK, South Africa, France and Germany and has experience in inspiring multicultural teams to outperform through fresh vision. Mattia is experienced in growing brands through product innovation and in managing complex projects. He graduated from the University of Padova.
Chris Jones is a Vice President of R&D in Reckitt Benckiser leading product development for key power brands. Chris has lived and worked in the US, Italy and the UK and developed products across Household and Personal Care sectors whilst striving to develop winning teams and advancement of his personnel. Chris holds a PhD in organometallic chemistry from the University of Liverpool.
Luigi Salmaso, PhD, is Full Professor of Statistics at the Department of Management and Engineering of the University of Padova and Deputy Chair of same Department. He has had over 300 papers and books published. His main research interests are in Design of Experiments, Six Sigma, Quality Control, Nonparametric Statistics, Industrial Statistics, Machine Learning and Big Data Analytics.
Preface by Chris E. Housmekerides, Senior Vice President R&D Reckitt Benckiser, Head of Innovations & Operations, Hygiene Home. Chris holds a PhD in inorganic chemistry from Penn State University. He has lived and worked in Belgium, China, Germany, Italy, the Netherlands and the US, published a plethora of patent applications in FMCGs, with R&D workstream leadership in M&As, R&D reorganization/restructuring/change management. He is passionate about R&D in the hygiene and homecare sector. He spent almost three decades questioning how industries can be more innovative with consumer products, challenging brands to provide better solutions, for today and tomorrow. His dream for the future is to influence through grass roots education – helping leaders of the future understand how to save energy, water, and lives through purpose‐led products.
Preface
The fast‐moving consumer goods (FMCG) industry includes a variety of sectors, from household products to food and beverages to cosmetics and over‐the‐counter (OTC). Despite products being very different in terms of their intended use, benefits, and the way they are regulated, there is a common approach to the method of developing them and identifying the solution for consumers. The process of innovation is similar: starting from the consumer understanding, identifying the insights that are most relevant, and then proceeding to develop an idea. A solution can solve a problem initially at the conceptual level, then moving across to an actual prototype, and then finally to new product development (NPD). No matter the segment, the appropriate use of data presents a value‐adding opportunity to NPD.
There is a great focus in the industry around using big data derived from multiple sources, which are easily accessible via the internet. Today, information derived from many global applications is increasingly measuring different aspects of our lives. However, the focus is now to gain business value from such data. Surprisingly, the use of data for product development in most cases is not robustly established; a clear connection between the experts in statistics/data analytics and the product developers within the main FMCG companies needs to be established.
The focus is to develop better products for consumers by investing the right features and to support faster developments to ultimately limit the number of experiments. So, the scope of this book is to demonstrate how actual statistics, data analytics and design of experiment (DoE) can be widely used to gain vital advantages with respect to speed of execution and lean formulation capacity. The intention is to start from feasibility screening, formulation, and packaging development, sensory tests, etc. introducing relevant techniques for data analytics and guidelines for data interpretation. Process development and product validation can also be optimized through data understanding, analysis and validation.
Throughout the book, there is an intentional balance between the discussion of real case studies and topic explanations made as clear and intuitive as possible. Details on statistical and analytical tools are presented in sections denoted as Stat Tools. Each case study includes a guide to apply the proposed techniques with Minitab, a widely used general‐purpose statistical software (Cintas, P. G., et al., 2012). Some examples with JMP software are also developed as online supplementary material.
This book is an exciting collaboration between expert Statisticians from the University of Padova and innovators/product developers from Reckitt Benckiser (RB) over more than 15 years. The passion and the involvement of multiple people within RB and the University of Padova in various projects have allowed for the development of the examples discussed in this book. A big thanks goes to the leading management group and all people from RB who contributed directly or indirectly in giving inspiration to write this book.
Dr. Chris Housmekerides SVP R&D RB Head of Innovations & Operations, Hygiene Home
About the Companion Website
This book is accompanied by a companion website:
www.wiley.com/go/salmaso/data-analytics-for-pd
The website includes:
Case studies
Different projects with JMP software
Scan this QR code to visit the companion website.
1 Basic Statistical Background
1.1 Introduction
Statistics and data analytics play a central role in improving processes and systems and in decision‐making for strategic planning and manufacturing (Roberts, H. V., 1987). During experimental research, statistical tools can allow the experimenter to better organize observations, to specify working hypotheses and possible alternative hypotheses, to collect data efficiently, and to analyze the results and come to some conclusions about the hypotheses made.
This is an introductory chapter where readers can review several basic statistical concepts before moving on to the next chapters. Sixteen sections titled Stat Tools will introduce some key terms and procedures that will be further elaborated and referred to throughout the text.
Specifically, this chapter deals with the following:
Topics | Stat tools |
Statistical variables and types of data | 1.1 |
Statistical Units, populations, samples | 1.2 |
Introduction to descriptive and inferential analyses | 1.3, 1.12, 1.13 |
Data distributions |
СКАЧАТЬ
|