Хаос. Создание новой науки. Джеймс Глик
Чтение книги онлайн.

Читать онлайн книгу Хаос. Создание новой науки - Джеймс Глик страница 12

СКАЧАТЬ черпак никогда не становится полным, трение не преодолевается и колесо не поворачивается. (Подобное явление наблюдается и в жидкости: если теплоты недостаточно, чтобы преодолеть вязкость, жидкость останется неподвижной.) С увеличением скорости водяного потока колесо начинает двигаться под тяжестью верхнего черпака (слева)и даже вращаться с постоянной скоростью (в центре). Однако при чрезмерной скорости воды (справа)вращение колеса может стать хаотичным из-за нелинейных воздействий, появившихся в системе. Черпаки, проходя под водяным потоком, наполняются в зависимости оттого, насколько быстро вращается колесо. При быстром вращении колеса им не хватает времени, чтобы наполниться. (Так же и жидкости в быстровращающихся конвекционных завитках недостает времени, чтобы поглотить тепло.) Кроме того, емкости могут начать двигаться в обратную сторону, не успев лишиться всей воды. В результате полные черпаки на движущейся вверх стороне колеса способны замедлить вращение всей системы, а затем вызвать ее поворот в обратную сторону. Фактически Лоренц обнаружил, что в течение длительных периодов времени вращение может менять свое направление несколько раз, никогда не обретая постоянной скорости и никогда не повторяясь каким-либо предсказуемым образом[46].

      Три уравнения с тремя переменными полностью описывали движение данной системы[47]. Компьютер ученого распечатал меняющиеся значения этих переменных в следующем виде: 0-10-0; 4-12-0; 9-20-0; 16-36-2; 30-66-7; 54-115-24; 93-192-Числа в наборе сначала увеличивались, затем уменьшались по мере отсчета временных интервалов: пять, сто, тысяча…

      Чтобы наглядно изобразить полученные результаты, Лоренц использовал каждый набор из трех чисел в качестве координаты точки в трехмерном пространстве. Таким образом, последовательность чисел воспроизводила последовательность точек, образующих непрерывную линию, запись поведения системы. Эта линия могла прийти в какую-то точку и там остановиться, что соответствовало бы достижению равновесия, при котором скорость и температура оставались постоянными. Был возможен и второй вариант: формирование петли, повторяющейся вновь и вновь и сигнализирующей о переходе системы в периодически повторяющееся состояние.

      Но Лоренц не обнаружил ни того ни другого. Система демонстрировала своего рода бесконечно сложное поведение. Траектория всегда оставалась ограниченной, но никогда не повторялась. Изгибы линии приобретали странные, но весьма характерные очертания, похожие на два крыла бабочки или на двойную спираль в трехмерном пространстве. И эта форма свидетельствовала о полной неупорядоченности, поскольку ни одна из точек или их комбинаций не повторялась. Но эта же форма свидетельствовала и о новом типе порядка.

      Спустя годы физики все еще обсуждали публикацию Лоренца – «эту замечательную, необыкновенную статью!», – и в их взгляде появлялась задумчивость. О его работе говорили так, словно она представляла собой древний манускрипт, хранивший СКАЧАТЬ



<p>46</p>

Подобное вращение можно наблюдать на видео: www.youtube.com/watch?v=Gu50alrmzNA.

<p>47</p>

Эта классическая модель, обычно называемая системой Лоренца, выглядит так:

dx/dt = 10 (ух)

dy/dt = xz + 28х у

dz/dt = ху (8/3) z

С момента ее появления в «Deterministic Nonperiodic Flow» система Лоренца много исследуется; см., например, авторитетную техническую работу: Sparrow C. The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors. Springer-Verlag, 27 См. русский перевод: Лоренц Э. «Детерминированное непериодическое течение» // Странные аттракторы. М.: Мир, С. 88. (Прим. науч. ред.)