Seveneves. Neal Stephenson
Чтение книги онлайн.

Читать онлайн книгу Seveneves - Neal Stephenson страница 20

Название: Seveneves

Автор: Neal Stephenson

Издательство: HarperCollins

Жанр: Научная фантастика

Серия:

isbn: 9780008132538

isbn:

СКАЧАТЬ bit of oxygen was bled in to replace what was being used, the occupant would be fine.

      Heat produced by the occupant’s body would build up in the atmosphere of the innermost bag and become stifling. A cooling system was required.

      Getting in and out of the Luk could be problematic. The Russians had somehow determined that just about anyone—or at least anyone capable of meeting the physical standards of the cosmonaut program—could force their body through a hole forty centimeters in diameter. Accordingly, each Luk included a flange—a forty-centimeter ring of fiberglass with bolt holes spaced around its periphery. All the layers of plastic converged on it, further enhancing its onionlike appearance. This became the onion’s cut-off stem. To keep the air from rushing out through that forty-centimeter hole, it was equipped with a stout diaphragm of much thicker plastic that could be put into place after the cosmonaut had climbed inside.

      So, the general procedure for using the Luk was to unfold the bag and find the flange, then pull it over one’s head, squirm through it until the shoulders and pelvis had passed through, draw the feet up inside of it, then find the diaphragm and lock it into place, sealing oneself inside. At this point the Luk was still a giant wrinkled mass of plastic hanging around the occupant like a sleeping bag.

      Once the Luk was free in the vacuum of space, it was okay to open the valve that flooded air into its many interstitial layers. Whereupon it would expand to the size of a mobile home, and drift around aimlessly until a rescue vehicle could get to it.

      On its outer hatch, the rescue vehicle would need to have an adapter with a bolt pattern made to engage with the holes on the Luk’s flange. Once an airtight connection had been made between Luk and vehicle, the hatch could be opened, the diaphragm removed, and the cosmonaut brought in from the cold. Or, given the difficulties of getting rid of excess thermal energy in space, from the heat.

      The Orlan suit was built around a hard upper torso, or HUT: a rigid shell for containing the wearer’s trunk, with connection points for the arms, legs, and helmet. The back of the HUT was a door with an airtight gasket around its edge. To put the suit on, you opened that door, threaded your feet down the legs, thrust your hands along the arms and into the attached gloves, and ducked into the helmet. The door was then closed behind you. From that point on the suit was an independent system.

      Roskosmos had constructed a number of Vestibyul modules, this being a newly invented thing that they had cobbled together from existing parts in about two weeks. Its purpose was to serve as a jury-rigged bridge connecting Luk to Orlan.

      The Vestibyul was barely large enough to accommodate a supine human. At one end was a flange that mated with the forty-centimeter ring on a Luk. Having slithered feetfirst from the Luk into the Vestibyul, a cosmonaut had just enough wiggle room to get his feet aimed down the legs of the Orlan suit that was attached to the other end, its door hanging open. Before doing this, however, he would seal off the Luk by manually putting its diaphragm into position and bolting it into place with a ratchet wrench.

      Having donned the Orlan, he could then activate a mechanism, built into the Vestibyul, that would close the suit’s door behind him. The small amount of residual air in the Vestibyul would hiss out into space and the cosmonaut would be free to depart. At the end of the workday, the whole procedure was reversed. Just like a suburban commuter sleeping in a split-level home with his car parked in the garage, the cosmonaut would enjoy a few hours of rest and relaxation floating around the confines of the Luk with his space suit docked at the end of the adjoining Vestibyul.

      There were a number of catches.

       Luk, Vestibyul, and suit formed a closed system. The only way to escape from that system was to successfully don the suit, get the door closed, and spacewalk to an airlock. If anything went wrong that prevented donning the suit and closing the door, rescue was impossible, or at least spectacularly improbable. A perforated Luk, probably caused by a micrometeoroid, caused a fatality on the second day of the Scout program. After that, the Luk/Vestibyul systems were brought forward to huddle in the shelter of Amalthea. The asteroid wouldn’t stop all incoming rocks, but it would stop many.

       Since there was no practical way in or out of the system, the Scouts had to fly up from Baikonur in their space suits, preattached to their Vestibyuls and Luks. This was necessitated anyway by the fact that none of this equipment could be accommodated inside of a normal space capsule. So they had to fly up crammed, six at a time, into cargo carriers that were not rated for human use and that had no onboard life support. They were, therefore, living off their space suits’ internal supplies of air and power from shortly before launch until their arrival at ISS. This journey could not be accomplished in less than six hours and so supplemental air and power had to be delivered to the suits en route. The failure of systems responsible for doing that accounted for two fatalities in the first crew of six Scouts and one fatality in the second crew.

       The capabilities of the suits were being wildly overstretched by these new mission parameters, and of course the Luks didn’t really have significant life support systems of their own, so everything depended on umbilical lines that linked these contraptions to Zavod modules. Zavod was simply the Russian word for “factory.” This was another new device that had been cobbled together in two weeks from existing technology. As long as the Zavod was supplied with power, water, and a few consumables, it was supposed to keep a cosmonaut alive by scrubbing CO2 out of the air, collecting urine, and removing their body heat. The heat was gotten rid of by freezing water on a surface exposed to the vacuum and then letting it sublimate into space. Failures of Zavod modules accounted for four fatalities among the first three crews sent up. Two of these were caused by a bug in the software, subsequently fixed by a patch transmitted up from the ground. One was a leaky hose. The other was never explained, but the fatality was witnessed by Izzy’s crew, watching through windows and video feeds, and seemed to match the profile for hyperthermia. The cooling system had failed and the cosmonaut had lost consciousness and succumbed to heatstroke. After that, they had stopped using the jerry-built cooling systems that had shipped up with the Luks and simply used ziplock bags full of ice, delivered daily.

      None of this even accounted for mishaps that occurred while the Scouts were actually working. A damaged umbilical nearly killed a Scout on A+0.35, and he was obliged to disconnect himself from his Zavod and execute a heroic and perilous move to the nearest airlock, where they got him inside the space station with less than a minute to spare.

      Two days later a Scout simply disappeared without explanation, possibly the victim of a micrometeoroid, or even of suicide.

      So, of the first crew of six Scouts, two were dead on arrival and one was killed in the Luk failure the next day. Of the second crew, one was dead on arrival. All six of the third crew made it to Izzy alive. Of the fourteen total survivors, four died from Zavod failures, one disappeared, and one was forced to “retire” from being a Scout and confine his activities to Izzy because of equipment failure.

      Ivy, being at the top of the org chart, was responsible for all strange and extraordinary decisions: the problems that no one else knew how, or was willing, to handle. It became her problem to decide what they were going to do with dead people.

      Oh, there was a procedure. NASA had a procedure for everything. They had long ago anticipated that an astronaut might die of a heart attack or some mishap during a mission. Since two hundred pounds of rotting flesh could not be accommodated inside of the space station where people lived and worked, the general idea was to let them freeze-dry in space, and then place them aboard the next earthbound Soyuz capsule. Only the middle section of the Soyuz, the reentry module, ever made it back to Earth. The spheroidal orbital module, perched on top of it, was jettisoned before reentry. Eventually it burned up in the Earth’s atmosphere. The customary procedure, therefore, was to pack the orbital module with trash so that it would be burned up as well.

      Bodies СКАЧАТЬ