Человеческие сети. Как социальное положение влияет на наши возможности, взгляды и поведение. Мэтью О. Джексон
Чтение книги онлайн.

Читать онлайн книгу Человеческие сети. Как социальное положение влияет на наши возможности, взгляды и поведение - Мэтью О. Джексон страница 11

СКАЧАТЬ принцип в колоссальном масштабе всей Паутины, а это значило, что нужно облазить всю сеть и проиндексировать страницы, накопить данные о содержании каждой страницы и об имеющихся на ней ссылках, а затем произвести итеративные вычисления, чтобы определить их сетевое положение. Одно дело – производить подобные расчеты для Нэнси и Уоррена в нашей маленькой сети, показанной выше, и совсем другое – проделывать то же самое для миллиардов страниц, тем более что они постоянно меняют содержание и ссылки.

      Брин с Пейджем разработали алгоритм, основанный на такого рода вычислениях и хорошо подходивший для огромных сетей, назвали его BackRub и запустили в работу на стэнфордских серверах. Название BackRub (буквально backrub значит “массаж спины”) происходит от backlink – “обратной ссылки”, то есть такой ссылки, которая приводит пользователя на ту или иную страницу. BackRub быстро перерос студенческие аккаунты, которые Брин и Пейдж завели на стэнфордских серверах, и в 1997 году они уже перенесли поисковую машину в другое место и назвали ее Google. Это было чуть видоизмененное название числа гугол (googol) – 10100, что говорило об огромном размере Всемирной сети, которую удалось-таки покорить их алгоритму. Всех, кому доводилось искать что-либо в интернете в ранние годы его существования, поражала способность Google находить полезные страницы. К тому времени имелось уже немало поисковых машин, конкурировавших между собой, и, как правило, пользователям приходилось перепробовать их все, чтобы найти в сети нужную страницу – часто безрезультатно. В 1998 году PC Magazine сообщил, что Google “на удивление ловко и удачно находит полезные страницы”, и поместил его в сотню самых важных веб-страниц{29}. Остальное – уже история{30}.

      Распространение микрофинансирования

      Хотя история с Google наводит на мысль о том, что алгоритм, основанный на вычислении собственного вектора, превосходит все прочие альтернативы, алгоритмы для поисковых машин весьма сложны, так что успех Google вполне может объясняться и другими различиями в алгоритмах. Было бы прекрасно увидеть более полную картину того, какое именно значение имеет положение чьих-то друзей. А еще BackRub распознавал страницы по тому, насколько легко их найти, тогда как во многих ситуациях нам интересно совсем другое: насколько влиятелен тот или иной человек с точки зрения установления контакта с другими людьми.

      Именно об этом я думал, когда приехал в 2006 году в Массачусетский технологический институт (MIT) и, общаясь с профессором Абхиджитом Банерджи, моим другом, говорил о том, как было бы прекрасно испытать подобные различия в действии. По счастливому стечению обстоятельств (как уже нередко бывало), Абхиджит оказался именно тем человеком, с которым мне и следовало об этом поговорить. Оказалось, что Эстер Дюфло, еще одна преподавательница MIT, через свою сестру Анни поддерживает связь с одним банком в Южной Индии, а именно с банком BSS (Baratha Swamukti Samsthe), который планирует запустить новую программу микрофинансирования как раз посредством “сарафанного радио”. (Сейчас можно увидеть СКАЧАТЬ



<p>29</p>

Поисковые машины, включая Google, быстро развивались по мере того, как компьютеры становились все более мощными, а наш опыт обращения с Сетью – более богатым. Сейчас подобные машины содержат более полную информацию и о пользователях, и о разных веб-страницах, и более индивидуальную сетевую информацию о том, как люди перемещаются по Сети и что же они на самом деле ищут. Кроме того, Сеть в наши дни – своего рода подвижная мишень, ее содержание постоянно изменяется. Тем не менее, в принципе идея PageRank ознаменовала важный прорыв, точно отобразивший характер сетевой информации.

<p>30</p>

Отслеживание связей дальше первого уровня важно во многих средах, не только для работы поисковых машин и распространения информации. Вариации подобных итеративных вычислений центральности, причем с использованием собственных векторов, появлялись в литературе, посвященной социальным сетям, за несколько десятилетий до появления Google; стоит отметить новаторскую работу Лео Каца (Leo Katz) 1950-х годов и более позднюю, 1970-х годов работу Фила Боначича (Phil Bonacich), формализовавшую подобные методы. Вариации определения собственного вектора использовались для нахождения “важнейших фигур” в сетях, занятых нелегальной деятельностью, так как преступность имеет социальную составляющую: люди узнают друг от друга о возможности заняться чем-то незаконным и втягивают друг друга в преступную деятельность, а самые центральные фигуры в подобных сетях оказывают наибольшее влияние на других участников (см., напр., Lindquist and Zenou [2014]). Подобные критерии определения центральности применялись и для изучения общения между инвесторами, чтобы можно было предсказывать, у кого из инвесторов окажется наиболее высокая прибыль на фондовой бирже (см. Ozsoylev, Walden, Yavuz, and Bildik [2014]).