Название: The Music of the Primes: Why an unsolved problem in mathematics matters
Автор: Marcus Sautoy du
Издательство: HarperCollins
Жанр: Прочая образовательная литература
isbn: 9780007375875
isbn:
The first tentative evidence that humankind knew about the special qualities of prime numbers is a bone that dates from 6500 BC. Called the Ishango bone, it was discovered in 1960 in the mountains of central equatorial Africa. Marked on it are three columns containing four groups of notches. In one of the columns we find 11, 13, 17 and 19 notches, a list of all the primes between 10 and 20. The other columns do seem to be of a mathematical nature. It is unclear whether this bone, housed in Belgium’s Royal Institute for Natural Sciences in Brussels, truly represents our ancestors’ first attempts to understand the primes or whether the carvings are a random selection of numbers which just happen to be prime. Nevertheless, this ancient bone is perhaps intriguing and tantalising evidence for the first foray into the theory of prime numbers.
Some believe that the Chinese were the first culture to hear the beating of the prime number drum. They attributed female characteristics to even numbers and male to odd numbers. In addition to this straight divide they also regarded those odd numbers that are not prime, such as 15, as effeminate numbers. There is evidence that by 1000 BC they had evolved a very physical way of understanding what it is, amongst all the numbers, that makes prime numbers special. If you take 15 beans, you can arrange them in a neat rectangular array made up of three rows of five beans. Take 17 beans, though, and the only rectangle you can make is one with a single row of 17 beans. For the Chinese, the primes were macho numbers which resisted any attempt to break them down into a product of smaller numbers.
The ancient Greeks also liked to attribute sexual qualities to numbers, but it was they who first discovered, in the 4th century BC, the primes’ true potency as the building blocks for all numbers. They saw that every number could be constructed by multiplying prime numbers together. Whilst the Greeks mistakenly believed fire, air, water and earth to be the building blocks of matter, they were spot on when it came to identifying the atoms of arithmetic. For many centuries, chemists strove to identify the basic constituents of their subject, and the Greeks’ intuition finally culminated in Dmitri Mendeleev’s Periodic Table, a complete description of the elements of chemistry. In contrast to the Greeks’ head start in identifying the building blocks of arithmetic, mathematicians are still floundering in their attempts to understand their own table of prime numbers.
The librarian of the great ancient Greek research institute in Alexandria was the first person we know of to have produced tables of primes. Like some ancient mathematical Mendeleev, Eratosthenes in the third century BC discovered a reasonably painless procedure for determining which numbers are prime in a list of, say, the first 1,000 numbers. He began by writing out all the numbers from 1 to 1,000. He then took the first prime, 2, and struck off every second number in the list. Since all these numbers were divisible by 2, they weren’t prime. He then moved to the next number that hadn’t been struck off, namely 3. He then stuck off every third number after 3. Since these were all divisible by 3, they weren’t prime either. He kept doing this, just picking up the next number which hadn’t already been struck from the list and striking off all the numbers divisible by the new prime. By this systematic process he produced tables of primes. The procedure was later christened the sieve of Eratosthenes. Each new prime creates a ‘sieve’ which Eratosthenes uses to eliminate non-primes. The size of the sieve changes at each stage, but by the time he reaches 1,000 the only numbers to have made it through all the sieves are prime numbers.
When Gauss was a young boy he was given a present – a book containing a list of the first several thousand prime numbers which had probably been constructed using these ancient number sieves. To Gauss, these numbers just tumbled around randomly. Predicting the elliptical path of Ceres would be difficult enough. But the challenge posed by the primes had more in common with the near-impossible task of analysing the rotation of bodies such as Hyperion, one of Saturn’s satellites, which is shaped like a hamburger. In contrast to the Earth’s Moon, Hyperion is far from gravitationally stable and spins chaotically. Even though the spinning of Hyperion and the orbits of some asteroids are chaotic, at least it is known that their behaviour is determined by the gravitational pull of the Sun and the planets. But for the primes, no one had the faintest idea what was pulling and pushing these numbers around. As he gazed at his table of numbers, Gauss could see no rule that told him how far to jump to find the next prime. Were mathematicians just going to have to accept these numbers as determined by Nature, set like stars in the night sky with no rhyme or reason? Such a position was unacceptable to Gauss. The primary drive for the mathematician’s existence is to find patterns, to discover and explain the rules underlying Nature, to predict what will happen next.
The search for patterns
The mathematician’s quest for primes is captured perfectly by one of the tasks we have all faced at school. Given a list of numbers, find the next number. For example, here are three challenges:
1, 3, 6, 10, 15, …
1, 1, 2, 3, 5, 8, 13, …
1, 2, 3, 5, 7, 11, 15, 22, 30, …
Numerous questions spring to the mathematical mind when faced with such lists. What is the rule behind the creation of each list? Can you predict the next number on the list? Can you find a formula that will produce the 100th number on the list without having to calculate the first 99 numbers?
The first sequence of numbers above consists of what are called the triangular numbers. The tenth number on the list is the number of beans required to build a triangle with ten rows, starting with one bean in the first row and ending with ten beans in the last row. So the Nth triangular number is got by simply adding the first N numbers: 1 + 2 + 3 + … + N. If you want to find the 100th triangular number, there is a long laborious method in which you attack the problem head on and add up the first 100 numbers.
Indeed, Gauss’s schoolteacher liked to set this problem for his class, knowing that it always took his students so long that he could take forty winks. As each student finished the task they were expected to come and place their slate tablets with their answer written on it in a pile in front of the teacher. While the other students began labouring away, within seconds the ten-year-old Gauss had laid his tablet on the table. Furious, the teacher thought that the young Gauss was being cheeky. But when he looked at Gauss’s slate, there was the answer – 5,050 – with no steps in the calculation. The teacher thought that Gauss must have cheated somehow, but the pupil explained that all you needed to do was put N = 100 into the formula
Rather than tackling the problem head on, Gauss had thought laterally. He argued that the best way to discover how many beans there were in a triangle with 100 rows was to take a second similar triangle of beans which could be placed upside down on top of the first triangle. Now Gauss had a rectangle with 101 rows each containing 100 beans. Calculating the total number of beans in this rectangle built from the two triangles was easy: there are in total 101 × 100 = 10,100 beans. So one triangle must contain half this number, namely
The picture overleaf illustrates the argument for the triangle СКАЧАТЬ