Гравитация. От хрустальных сфер до кротовых нор. А. Н. Петров
Чтение книги онлайн.

Читать онлайн книгу Гравитация. От хрустальных сфер до кротовых нор - А. Н. Петров страница 4

Название: Гравитация. От хрустальных сфер до кротовых нор

Автор: А. Н. Петров

Издательство: Век 2

Жанр: Физика

Серия:

isbn: 978-5-85099-190-6

isbn:

СКАЧАТЬ древнегреческий ученый Гиппарх (около 180–125 г. до н. э.) для определения расстояния до Луны, которое стало известным чрезвычайно точно. Причем для вычисления параллакса Луны он использовал разность ее угловых координат на восходе и закате. Измерить расстояния до других планет стало возможным только после начала использования в астрономии телескопов. Хотя опосредованным методом Гиппарх сделал оценки расстояния до Солнца, а также приблизительно определил его размеры.

      Рис. 1.4. Схема параллакса

      Итак, в системе Аристотеля лунная сфера является ближайшей к Земле (рис. 1.1) и представляет собой границу между не подверженными разрушению небесами и изменчивым миром Земли. Отсюда возникло выражение «подлунный мир». За пределами лунной сферы, в «надлунном мире», природа представлялась абсолютно совершенной, а движение небесных сфер, определяющих движение небесных тел, считалось естественным и идеальным. Таким образом, в небесной механике Аристотеля (в надлунном мире) не было места представлениям о тяготении.

      Мы подробно изложили представления о тяготении Аристотеля потому, что именно его система мироздания господствовала над умами многие столетия, хотя эти представления и ошибочны. Именно его взгляды в большой степени определяли развитие науки. Вместе с этим, нельзя не отметить, что существовали более реалистичные представления о тяготении. Так, Платон раньше Аристотеля утверждал, что подобное стремится к подобному – это ли не прообраз закона всемирного тяготения. Такую же мысль высказывал позднее римский поэт и философ Тит Лукреций Кар (около 99–55 г. до н. э.). Древнегреческий философ и астроном Плутарх (около 45–127 г.), фактически современник Птолемея, признанного последователя Аристотеля, несколькими столетиями позднее говорит: «Луна упала бы на землю как камень, чуть только уничтожилась бы сила ее полета». Сравните с рассуждениями Ньютона, приведенными ниже, о движениях яблока и Луны.

      Птолемей

      Вернемся к истории изучения движения небесных тел, хотя бы и в древности считали, что это не имеет отношения к гравитации. И, действительно, вряд ли предлагаемые модели того времени полезны для открытия реальных законов тяготения. Тем не менее, в итоге именно эти исследования привели к их построению.

      Итак, геоцентрическая система мира Аристотеля стала основной моделью Вселенной на долгое время. Немногочисленные попытки выйти за ее рамки или даже заменить гелиоцентрической моделью (с центром в Солнце) не воспринимались всерьез. И наоборот, модель Аристотеля, казалось, безоговорочно подтверждалась. Например, Птолемей (ок. 100–165), рис. 1.5, один из самых авторитетных последователей Аристотеля, обосновывал ее следующим образом. Поскольку центр Вселенной – это место, куда стремятся все имеющие вес тела, то там должна находиться и сама Земля, как самое тяжелое тело в мире. Если предположить, что Земля не в центре Вселенной, то она должна туда стремиться (падать). Но СКАЧАТЬ